Решим задачу с энергетического подхода. Для начала запишем уравнение динамики. На тело действуют горизонтальная сила тяги F и сила трения Fтр, которые противоположны по направлению. Равнодействующая направлена туда же, куда и ускоряющая сила тяги F:
F + (-Fтр) = ma
F - Fтр = ma (1)
Выразим ускорение через кинематическую формулу скорости:
а = (v - v0)/t - учитывая, что начальная скорость равна нулю (тело покоилось), будет:
а = v/t - подставим в (1):
F - Fтр = mv/t - выразим скорость v и найдём её, учитывая, что Fтр = μmg:
Теперь применим теорему об изменении кинетической энергии, которая гласит о том, что сумма работ внешних сил, действующих на тело, равна изменению кинетической энергии тела:
S(A) = dEk = Ek2 - Ek1 (2)
Работа силы тяги и силы трения:
А(F) = F*s
А(-Fтр) = -μmg*s
Изменение кинетической энергии равно:
Ek2 - Ek1 = mv²/2 - mv0²/2 = mv²/2 - 0 = mv²/2
Тогда, согласно (2):
A(F) + A(-Fтр) = Ek2
F*s + (-μmg*s) = mv²/2
s*(F - μmg) = mv²/2
s = mv²/(2*(F - μmg)) = 1*6²/(2*(4 - 0,1*1*10)) = 36/6 = 6 м
1.тело совершает прямолинейное равномерное движение или находится в покое. в качестве примера выполнения 1 закона ньютона можно рассмотреть движение парашютиста. он равномерно приближается к земле, когда действие силы тяжести компенсируется силой натяжения строп парашюта, которая в свою очередь обусловлена сопротивлением воздуха. 1-й закон ньютона-существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. 2. тело движется равноускоренно. как движется мяч после столкновения с битой. чем больше сила удара, тем с большим ускорением начнет двигаться мяч и, следовательно, тем большую скорость он приобретет за время удара. 2-й закон ньютона-ускорение, приобретаемое телом в инерциальной системе отсчета прямо пропорционально действующей на него силе и обратно пропорциональна его массе. импульс силы равен изменению импульса тела 3. возникает сила. взаимодействие космонавта и спутника (космонавт пытается придвинуть спутник к себе) . они действуют друг на друга с равными по величине, но противоположными по направлению силами. отметим, что ускорения, с которыми космонавт и спутник будут перемещаться в космическом пространстве будут разными из-за разницы в массах этих объектов. 3-й закон ньютона-тела взаимодействуют с силами, равными по модулю и противоположными по направлению.
Дано:
m = 1 кг
t = 2 c
F = 4 Н
μ = 0,1
g = 10 м/с²
v0 = 0 м/с
s - ?
Решим задачу с энергетического подхода. Для начала запишем уравнение динамики. На тело действуют горизонтальная сила тяги F и сила трения Fтр, которые противоположны по направлению. Равнодействующая направлена туда же, куда и ускоряющая сила тяги F:
F + (-Fтр) = ma
F - Fтр = ma (1)
Выразим ускорение через кинематическую формулу скорости:
а = (v - v0)/t - учитывая, что начальная скорость равна нулю (тело покоилось), будет:
а = v/t - подставим в (1):
F - Fтр = mv/t - выразим скорость v и найдём её, учитывая, что Fтр = μmg:
v = (F - Fтр)*t/m = (F - μmg)*t/m = (4 - 0,1*1*10)*2/1 = (4 - 1)*2 = 6 м/с
Теперь применим теорему об изменении кинетической энергии, которая гласит о том, что сумма работ внешних сил, действующих на тело, равна изменению кинетической энергии тела:
S(A) = dEk = Ek2 - Ek1 (2)
Работа силы тяги и силы трения:
А(F) = F*s
А(-Fтр) = -μmg*s
Изменение кинетической энергии равно:
Ek2 - Ek1 = mv²/2 - mv0²/2 = mv²/2 - 0 = mv²/2
Тогда, согласно (2):
A(F) + A(-Fтр) = Ek2
F*s + (-μmg*s) = mv²/2
s*(F - μmg) = mv²/2
s = mv²/(2*(F - μmg)) = 1*6²/(2*(4 - 0,1*1*10)) = 36/6 = 6 м
ответ: 6 м.