1) Найдём перемещения броска в двух случаях: 1 (и все величины с индексом 1) движение вверх; 2 (и все величины с индексом 2) движение вниз. Т.к. брусок одинаковые расстояния, приравняем и выразим значения времени и ускорения.
S1=V01×t1+1/2×a1×t1^2
S2=Vo2×t2+1/2×a2×t2^2=1/2×a2×t2^2
S1=S2
V01×t1+1/2×a1×t1^2=1/2×a2×t2^2
2V01×t1+a1×t1^2=a2×t2^2
(V1=V01-a1×t1 => V01=a1×t1^2)
☆a1×t1^2=a2×t2^2☆ {1}
Ускорения a1 и a2 РАЗНЫЕ, их приравнять нельзя.
2) По Второму з. Ньютона для движения вверх:
Fтр+mg×sinA=ma1 и N=mg×cosA
M×mg×cosA+mg×sinA=ma1
☆M×g×cosA+g×sinA=a1☆ {2}
По второму з. Ньютона для движения вниз:
-Fтр+mg×sinA=ma2
-M×mg×cosA+mg×sinA=ma2
☆-M×g×cosA+g×sinA=a2☆ {3}
(M-коэффициент трения, A-угол альфа)
3) Подставим значения ускорения из {2} и {3} в формулу {1} и посчитаем:
ответ: 10 г
Объяснение:
Дано:
М = 240 г = 0,24 кг
s = 160 см = 1,6 м
t = 4 c
--------------------------------
m - ?
Допустим дополнительный груз мы прикрепили к телу находящиегося слева
Теперь запишем второй закон Ньютона для обоих тел и составим систему
( M + m )a = ( M + m )g - T
Ma = T - Mg
Решим систему методом сложения
( 2M + m )a = ( M + m )g - Mg
( 2M + m )a = Mg + mg - Mg
( 2M + m )a = mg
2Ma + ma = mg
2Ma = m( g - a )
m = ( 2Ma )/( g - a )
Так так как оба блока отпустили без начальной скорости
Тогда s = ( at² )/2
a = ( 2s )/t²
a = ( 2 * 1,6 )/4² = 0,2 м/с²
Значит
m = ( 2 * 0,24 * 0,2 )/( 10 - 0,2 ) ≈ 10 г
1) Найдём перемещения броска в двух случаях: 1 (и все величины с индексом 1) движение вверх; 2 (и все величины с индексом 2) движение вниз. Т.к. брусок одинаковые расстояния, приравняем и выразим значения времени и ускорения.
S1=V01×t1+1/2×a1×t1^2
S2=Vo2×t2+1/2×a2×t2^2=1/2×a2×t2^2
S1=S2
V01×t1+1/2×a1×t1^2=1/2×a2×t2^2
2V01×t1+a1×t1^2=a2×t2^2
(V1=V01-a1×t1 => V01=a1×t1^2)
☆a1×t1^2=a2×t2^2☆ {1}
Ускорения a1 и a2 РАЗНЫЕ, их приравнять нельзя.
2) По Второму з. Ньютона для движения вверх:
Fтр+mg×sinA=ma1 и N=mg×cosA
M×mg×cosA+mg×sinA=ma1
☆M×g×cosA+g×sinA=a1☆ {2}
По второму з. Ньютона для движения вниз:
-Fтр+mg×sinA=ma2
-M×mg×cosA+mg×sinA=ma2
☆-M×g×cosA+g×sinA=a2☆ {3}
(M-коэффициент трения, A-угол альфа)
3) Подставим значения ускорения из {2} и {3} в формулу {1} и посчитаем:
t1^2/t2^2=a2/a1
t1/t2=1/2
ответ: 1/2