сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник:
По з. Бойля-Мариотта:
P1 V1 + P2 V2 = (V1 + V2) P,
(m1 R T / M1) + (m2 R T / M2) = ((m1RT/P1M1) + (m2RT/P2M2))P,
(m1/M1) + (m2/M2) = ((m1/P1M1) + (m2/P2M2))P,
(M2m1 + M1m2) / M1M2 = ((m1P2M2 + m2P1M1)/P1M1P2M2)P,
P = (M2m1 + M1m2) P1M1 P2M2 / M1M2 (m1P2M2 + m2P1M1),
P = P1P2 (M2m1 + M1m2) / (m1P2M2 + m2P1M1),
P = 225*10^9 (44*10^(-3)*1,8 + 32*10^(-3)*4,3) / (1,8*9*10^(5)*32*10^(-3) + 4,3*25*10^(4)*44*10^(-3)),
P = 4878*10^(7) / 99140 = 0,492 МПа ≈ 0,5 МПа = 500 кПа
2.
n = Aг / Qн
Аг = А23 + А41
А23 = v R T1 ln(k)
A41 = v R T2 ln(1/k)
Aг = vR (T1 ln(k) + T2 ln(1/k)),
Aг = 831*10 (630*2 - 250*2),
Aг = 63156*10^2 Дж
Qн = Q23 + Q12
Q23 = A23 = 104706*10^2 Па
Q12 = ΔU12 = (i/2) * v R ΔT = 1,5*10^(3)*8,31*380 = 47367*10^2 Дж
Qн = 152073*10^2 Дж
n = 63156 / 152073 ≈ 0,415 ≈ 41,5 %
сила тяжести груза mg=60нmg=60н значительно больше силы, с которой надо тянуть веревку, чтобы удержать груз. это определяется существенными силами трения веревки о бревно. сначала силы трения препятствуют соскальзыванию груза под действием силы тяжести. полный расчет распределения сил трения, действующих на веревку, довольно сложен, поскольку сила натяжения веревки в местах ее соприкосновения с бревном меняется от f1f1 до mgmg. в свою очередь сила давления веревки на бревно также меняется, будучи пропорциональной в каждой точке соответствующей локальной силе натяжения веревки. соответственно и силы трения, действующие на веревку, определяются именно указанными силами давления. однако для решения достаточно заметить, что полная сила трения fтрfтр (слагающие которой пропорциональны в каждой точке силе реакции бревна) будет с соответствующими коэффициентами пропорциональна силам натяжения веревки на концах; в частности, с некоторым коэффициентом kk она будет равна большей силе натяжения: fтр=kmgfтр=kmg. это означает, что отношение большей силы натяжения к меньшей есть величина постоянная для данного расположения веревки и бревна: mg/t1=1/(1−k)mg/t1=1/(1−k), поскольку t1=mg−kmgt1=mg−kmg. когда мы хотим поднять груз, концы веревки как бы меняются местами. сила трения теперь направлена против силы t2t2 и уже не , а мешает. отношение большей силы натяжения, равной теперь t2t2, к меньшей - mgmg будет, очевидно, таким же, как и в первом случае: t2/mg=1/(1−k)=mg/t1t2/mg=1/(1−k)=mg/t1. отсюда находим, что t2=(mg)2/t1=90н источник: