В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
xiumin90
xiumin90
27.04.2023 19:59 •  Физика

Завдання 6. ( ). У циліндрі знаходиться 3 кг повітря при температурі 283° С. Яка робота буде виконана при ізобарному
нагріванні повітря до 3939 С? Скільки тепла було витрачено на
нагрівання повітря? Молярна маса повітря 0,029 кг/моль, питома
теплоємність повітря - 1000 Дж/(кг °С).

Показать ответ
Ответ:
paliy2006
paliy2006
18.10.2020 09:40

Дано: m=5,67 кг, S=50 км, υ=90 км/ч, η=22%, N−? Решение задачи: Коэффициент полезного действия двигателя η равен отношению полезной работы двигателя к затраченной работе. η=AпAз(1)

Полезную работу двигателя Aп можно узнать через искомую мощность по следующей формуле: Aп=Nt Здесь t – время движения автомобиля (точнее время работы двигателя), которое, очевидно, можно определить по формуле: t=Sυ Aп=NSυ(2) Затраченная работа Aз равна количеству теплоты, выделяющемуся при сгорании бензина, поэтому справедлива формула: Aз=qm(3) В этой формуле q – удельная теплота сгорания бензина, равная 46 МДж/кг.

Подставим выражения (2) и (3) в формулу (1): η=NSυqm Осталось только выразить мощность двигателя N: N=ηυqmS Переведём скорость в м/с, а КПД – в доли единицы: 90км/ч=90⋅10001⋅3600м/с=25м/с 22%=0,22 Произведем вычисления: N=0,22⋅25⋅46⋅106⋅5,6750⋅103=28690Вт≈29кВт ответ: 29 кВт.

0,0(0 оценок)
Ответ:
artem222529ozd6op
artem222529ozd6op
26.05.2022 05:18
Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. за секунду молекула в среднем проходит расстояние, численно равное ее средней скорости  . если за это же время она испытает в среднем    столкновений с другими молекулами, то ее средняя длина свободного пробега    , очевидно, будет равна (3.1.1) предположим, что все молекулы, кроме рассматриваемой, неподвижны. молекулы будем считать шарами с диаметром d. столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. при столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1). рис. 1 молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. за секунду молекула проходит путь, равный    . поэтому число происходящих за это время столкновений равно числу молекул, центры которых внутрь ломаного цилиндра, имеющего суммарную длину    и радиус d. его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным    если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно (3.1.2) в действительности движутся все молекулы. поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной. предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости  представить среднюю скорость относительного движения    рассматриваемой молекулы. в самом деле, если налетающая молекула движется со средней относительной скоростью    , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). поэтому формулу (3.1.2) следует написать в виде: (3.1.3) предположим, что скорости молекул до столкновения были    и    тогда    из треугольника скоростей имеем (рис. 2) (3.1.4) так как углы    и скорости    и    , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее рис. 2 от произведения этих величин равно произведению их средних. поэтому (3.1.5) с учетом последнего равенства формулу (3.1.4) можно переписать в виде: (3.1.6) так как    cредняя квадратичная скорость пропорциональна средней скорости, (3.1.7) т. е.    .поэтому соотношение (3.1.6) можно представить так: (3.1.8) с учетом последнего выражения формула для средней длины свободного пробега приобретает вид: (3.1.9) для идеального газа    . поэтому (3.1.10) отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. вычисление средней длины свободного пробега для азота (d = 3•10-10  м), находящегося при нормальных условиях (р = 1,01•105  па, т = 273,15 к) дает:   , а для числа столкновений за одну секунду:     . таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота