Зависимость пройденного телом пути от времени дается уравнением S = B + 2Ct + Dt^3, где B =6 м, C=3 м/с, D= - 0,5 м/с^3 - постоянные величины. Определить момент времени, когда скорость тела будет равна нулю, а также значение ускорения в этот момент времени.
Мы знаем формулу периода математического маятника:
T=2\pi*\sqrt\frac{l}{g};\\
Запишем ее для двух случаев, по условию, что T2=T1/2.
T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\
Поделим первое уравнение на второе:
\frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\
Возводим и правую и левую часть в квадрат:
4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\
То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
Мы знаем формулу периода математического маятника:
T=2\pi*\sqrt\frac{l}{g};\\
Запишем ее для двух случаев, по условию, что T2=T1/2.
T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\
Поделим первое уравнение на второе:
\frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\
Возводим и правую и левую часть в квадрат:
4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\
То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.