В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Aleqs2005
Aleqs2005
05.04.2020 10:55 •  Физика

ЗДРАВСТВУЙТЕ прашу найдите недастоющую частицу или ядро

Показать ответ
Ответ:
savinanika2007p06u72
savinanika2007p06u72
14.04.2021 13:39

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx 2  км/с .

v = \sqrt{2gh} \approx 2  км/с ;

Объяснение:

h = 206  км  = 206 \ 000  м – максимальная высота подъёма ;

R_3 = 6 \ 400  км  = 6 \ 400 \ 000  м – радиус Земли ;

g = 10  м/c² – ускорение свободного падения на поверхности ;

v = ?  – найти начальную скорость.

Далее в решении мы никак не будем учитывать вращение Земли, поскольку дело происходит на полюсе, где линейная скорость вращения поверхности земли относительно её центра пренебрежимо мала.

Потенциальная энергия гравитационного взаимодействия тел, когда её общее изменение необходимо учесть на расстояниях, отличающихся на величину, соизмеримую с радиусом Земли, описывается выражаением:

W_G = - \gamma \cdot \frac{Mm}{r}  ,  где  M  и  m  – большое и малое гравитирующие тела, а  r  – расстояние между ними.

Правильность такого расчёта легко проверить следующим образом. Пусть тела находятся на расстоянии  r_o  , а затем под действием гравитации приближаются на расстояние  ( r_o - \Delta r )  . Значит их потенциальная энергия уменьшится со значения  W_{Go} = - \gamma \cdot \frac{Mm}{r_o}  , до значения  W_{Gn} = - \gamma \cdot \frac{Mm}{ r_o - \Delta r }  . Падение потенциальной энергии таким образом (равное росту кинетической):

\Delta W_{G} = W_{Go} - W_{Gn} = [ - \gamma \cdot \frac{Mm}{r_o} ] - [ - \gamma \cdot \frac{Mm}{ r_o - \Delta r } ] =

= \gamma Mm ( \frac{1}{ r_o - \Delta r } - \frac{1}{r_o} ) = \gamma Mm \cdot \frac{ r_o - ( r_o - \Delta r ) }{ ( r_o - \Delta r ) r_o } \approx \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

(*)  \Delta W_{G} = \gamma Mm \cdot \frac{ \Delta r }{ r_o^2 }  ;

Но с другой стороны, падение потенциальной энергии равно работе гравитационного поля:

(**)  \Delta W_{G} = \Delta A_G = F_G \cdot \Delta r = ( \gamma \cdot \frac{Mm}{r_o^2} ) \cdot \Delta r  ;

Как легко видеть, выражения (*) и (**) – равны, что доказывает справедливость описания потенциальной энергии гравитационного взаимодействия выражением:

W_G = - \gamma \cdot \frac{Mm}{r}  ;

Общая механическая энергия (вместе с кинетической  E  ) в верхней точке будет такой же, какой была в нижней, за вычетом  A_{conp}  работы сил сопротивления среды (атмосферы):

W_{Go} + E_o - A_{conp} = W_{Gn} + E_n  ;

Поскольку сопротивление мы не учитываем (пренебрегаем), то уравнение принимает вид:

- \gamma \cdot \frac{Mm}{r_o} + \frac{mv^2}{2} = - \gamma \cdot \frac{Mm}{r_n} + 0  ;

Умножим на  \frac{2}{m}  :

v^2 = 2 \gamma \cdot \frac{M}{r_o} - 2 \gamma \cdot \frac{M}{r_n}  ;

v^2 = 2 \gamma M ( \frac{1}{r_o} - \frac{1}{r_n} ) = 2 \gamma M ( \frac{1}{ R_3 } - \frac{1}{ R_3 + h } ) =

= 2 R_3 \gamma \cdot \frac{M}{R_3^2} ( 1 - \frac{R_3}{ R_3 + h } ) = 2 g \cdot \frac{R_3 h}{ R_3 + h }  ;

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{206 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 1998  м/с  \approx 1.998  км/с \approx 2  км/с .

Мы пренебрегли сопротивлением воздуха, так что вычислять так точно падение потенциальной энергии с учётом меняющегося  g  не имеет практического смысла. Можно посчитать то же самое и по более простому, приближённому алгоритму:

\frac{mv^2}{2} = mgh  ;

v^2 = 2gh  ;

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 206 \ 000 }  м/с  \approx 2030  м/с  \approx 2  км/с ;

*** Вообще, всё выглядит немного странно, тут подозрительно странным числом указана высота. К чему это 206? Возможно в исходном условии было:  h = 2 \cdot 10^3  км  = 2 \cdot 10^6  м.

Тогда бы верное решение получалось только первым

v = \sqrt{ \frac{2g}{ 1/h + 1/R_3 } } \approx \sqrt{ 20 / ( \frac{1}{2 \ 000 \ 000} + \frac{1}{ 6 \ 400 \ 000 } ) }  м/с  \approx 5520  м/с  \approx 5.52  км/с  \approx 5.5  км/с .

В упрощённом варианте подсчёта при этом была бы уже значительная ошибка:

v = \sqrt{2gh} \approx \sqrt{ 20 \cdot 2 \ 000 \ 000 }  м/с  \approx 6325  м/с  \approx 6.3  км/с .

0,0(0 оценок)
Ответ:
VikaFragran
VikaFragran
07.07.2020 03:14

Объяснение:

Дано:

ω₁ = 0,6   - массовая доля азота

M₁ = 28·10⁻³ кг/моль - молярная масса азота

ω₂ = 0,4     - массовая доля кислорода.

M₂ = 32·10⁻³ кг/моль - молярная масса кислорода

p = 100 кПа = 1·10⁵ Па

M = 29·10⁻³ кг/моль - молярная масса воздуха

p₁ - ?

p₂ - ?

Запишем уравнение Клапейрона-Менделеева для воздуха:

p·V = m·R·T / M

p =  m·R·T / (V·M)

Отсюда:

m·R·T/ V = p·M

m·R·T/ V = 1·10⁵· 29·10⁻³ = 2,9·10³ Па·кг/моль

Находим парциальные давления азота и кислорода:

p₁ = ω₁·m·R·T / (V·M₁) = (ω₁/M₁) ·m·R·T / V =

= 2,9·10³·0,6/(28·10⁻³)  ≈ 62 кПа

p₂ = ω₂·m·R·T / (V·M₂) = (ω₂/M₂) ·m·R·T / V =

=2,9·10³·0,4/(32·10⁻³)  ≈ 36 кПа

Проверим: 62 кПа + 36 кПа = 98 кПа ≈ 100 кПа

Расхождение в 2 кПа связано с тем, что в состав воздуха входят и другие газы.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота