Жесткая рама, расположенная в вертикальной плоскости, закреплена в точке А шарнирно, а в точке В прикреплена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках. В точке С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р = 25 кН. На раму действуют пара сил с момен¬том М = 100 кН·м и две силы, значения, направления и точки приложения которых указаны в таблице С1 (например, в условиях номер 1 на раму действует сила под углом 15° к горизонтальной оси, приложенная в точке D, и сила под углом 60° к горизонтальной оси, приложенная в точке Е, и т.д.). Определить реакции связей в точках A, В, вызываемые действую-щими нагрузками. При окончательных расчетах принять а = 0,5м.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет p1 = m * u * корень(2)/2, а обоих вместе взятых p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу p0 = 2m v = p2 = mu*корень(2) сократим массу 2v = u*корень(2) u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.
Это мы будем делать посредством закона Менделеева-Клапейрона. Имеем в общем виде:
P V = m R T / M. Выводим массу воздуха внутри шара:
m(г) = P V M / R T0.
То же уравнение М.-К. делим на V. Имеем в общем виде:
P = p R T / M. Выводим плотность воздуха снаружи:
p = P M / R T.
А теперь время заняться матаном, хы.
V = (m(об) + (P V M / R T0)) / (P M / R T),
V = (m(об) R T0 + P V M) R T / R T0 P M,
V = (T m(об) R T0 + T P V M) / T0 P M,
T m(об) R T0 + T P V M = V T0 P M,
T m(об) R T0 = V P M (T0 - T),
V = T m(об) R T0 / M P (T0 - T). Отмучались. Считаем:
V = 293 * 120 * 8,31 * 600 / 29*10^-3 * 10^5 * 307,
V = 175 307 760 / 890 300 = 196,908 м^3.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет
u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет
p1 = m * u * корень(2)/2, а обоих вместе взятых
p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу
p0 = 2m v = p2 = mu*корень(2)
сократим массу
2v = u*корень(2)
u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.