В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
okszav
okszav
12.11.2020 18:39 •  География

От плоской земли к земному шару как эратосфен измерил окружность земного шара

Показать ответ
Ответ:
Wlig123
Wlig123
09.07.2020 21:04
Эратосфён узнал, что в день летнего солнцестояния в Сиене (теперь Асуан) , расположенной южнее Александрии, солнце освещало в полдень дно глубоких колодцев, т. е. находилось в зените. В тот же полдень в Александрии, по измерениям Эратосфена, Солнце отстояло от зенита на 7° 12', что составляет 1/50 долю окружности. Отсюда Эратосфён заключил, что такую же долю окружности Земли составляет расстояние от Сиены до Александрии. Измерить это расстояние в те времена можно было только по числу дней, которое тратили караваны верблюдов на переход между этими городами. Оно составило 5000 греческих стадий. И если 1/50 окружности Земли равняется 5000 стадий, то вся окружность Земли должна быть в 50 раз больше, т. е. 5000 X 50 = 250 000 стадий. К сожалению, точная длина древнегреческой стадии теперь неизвестна, но, по-видимому, она была близка к 160 м. Таким образом, по определению Эратосфена, окружность Земли приблизительно равна 40 000 км, что очень близко к современным расчетам. 

Конечно, здесь был элемент случайности. На самом деле расчет Эратосфена был очень грубым главным образом потому, что он не знал точного расстояния от Сиены до Александрии. Но идея расчета была совершенно правильной. Она применяется поныне и заключается в следующем. На Земле измеряется расстояние в несколько сотен километров по прямой, проще всего по меридиану. 

В конечных точках этой длины проводятся астрономические наблюдения, например, Солнца в полдень или звезд в соответствующей части неба. Так определяют, скольким градусам, т. е. 360 долям окружности, соответствует эта длина. Элементарными расчетами легко получить длину дуги 1°. А если умножить длину одного градуса на 360, то получим всю длину земной окружности, равной 2Пи*R, где R — радиус земного шара, в круглых числах равный 6370 км. 

Таким образом, измерение величины земного шара сводится к определению длины одного градуса на Земле. Такая операция называется градусным измерением. В наше время в этот внесены многие усовершенствования, главным образом в измерение больших расстояний на земной поверхности. 

Многочисленные исследования были проведены учеными разных эпох, прежде чем удалось уточнить длину дуги одного градуса Земли. Трудности были связаны с отсутствием специальных астрономических инструментов, при которых можно было бы с большой точностью определить разницу в географической широте двух мест на земном шаре. Еще труднее было измерять большие расстояния с нужной точностью.
0,0(0 оценок)
Популярные вопросы: География
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота