Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Проведите биссектрису угла α и биссектрису угла при вершине равнобедренного Δ.Рассмотрите прямоугольный Δ, который образовался пересечением биссектрис. Его острый угол α/2, а противолежащий катет r, прилежащий катет -- половина основания. rctgα/2 -- половина основания. 2rctgα/2 -- всё основание. Рассмотрите Δпрямоугольный, у которого катеты половина основания и биссектриса, проведённая к основанию, а гипотенуза -- боковая сторона. По соотношению между сторонами и углами в прямоугольном треугольнике (2rctgα/2)/cosα -- боковая сторона R=(rctgα/2)/(cosαsinα)
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
2rctgα/2 -- всё основание. Рассмотрите Δпрямоугольный, у которого катеты половина основания и биссектриса, проведённая к основанию, а гипотенуза -- боковая сторона. По соотношению между сторонами и углами в прямоугольном треугольнике (2rctgα/2)/cosα -- боковая сторона
R=(rctgα/2)/(cosαsinα)