1. ( 0, ) Яка з наведених точок належить площині Оху?
а) М(-1;6;2) б) К(0;3;-9) в) Р(0;0;-2) г) С(5;0;9) д) В(4;-5;0)
2. ( 0, ) Яка з точок М є серединою відрізка АВ, якщо А(1;-1;1); В(1;-1;1)?
а) М(2;-2;0) б) М(1;-1;0) в) М(-1;1;1) г) М(0;1;-1) д) М(2;0;1)
3.( 0, ) Яка з точок симетрична точці А(-5;3;-2) відносно початку координат
а) (5;-3;2) б) (5;3;-2) в) (-5;-3;2) г) (3;-5;2) д) Інша відповідь
4. ( 0, ) Знайти координати вектора vec{AB} , якщо А( 3;-5;0), В( -2;7;1).
а) (1;-12;-1) б) (-5;12;1) в) (5;-12;-1) г) (1;2;1) д) (-5;2;1)
5. (За кожну відповідність 0, ) Установити відповідність між векторами ( 1-4) і співвідношеннями між ними ( А-Д).
1. vec{a} (6;-9;3) i vec{b} (2;-3;1) А Вектори перпендикулярні
2. vec{c} (-5;2;-7) i vec{d} (6;-4;3) Б Вектори колінеарні
3. vec{m} (1;2;-1) i vec{n} (2;-3;-4) В Вектори мають рівні довжини
4. vec{p} (2;-2;2) i vec{k} (1;-3;sqrt{2}) Г Сума векторів (1;vec{-2-};-4)
Д Вектори рівні
6. ( ) Дано АВСD – паралелограм. А(-4;1;5), В(-5;4;2), С( 3;-2;-1). Знайти координати вершини D.
7. ( ) При яких значеннях a вектори vec{c} (2;-3;8) і vec{d} (-7;-2;a) перпендикулярні?
8. ( ) Знайти на осі у точку, рівновіддалену від точок А(-3;7;4) і В(2;-5;-1).
9. ( ) Дано вектори: vec{a} (5;2;1), vec{b} (0;-3;2) . Знайти довжину вектора vec{c} = 2 vec{a}- vec{b} .
10. ( ) Знайти кут між векторами vec{AB} i vec{CD} , якщо А(1;0;2), В(1;sqrt{3};3), С(-1;0;3), D(-1;-1;3)
1)Рисуешь небольшой квадрат, и имянуешь каждый угол по порядку так, как написано в условии.
получается:
а)От G до FE(не включительно) будет всего лишь :
GH=17см, т.к. просят отрезок именно FЕ, если бы просили ЕF, то было бы GH, HE =17+17=34см.
б)Центр квадрата намного легче посчитать, в отличие от круга.
Центр квадрата будет равен половине его любой стороны (все стороны равны), значит.
О=17:2=8,5см.
Если О действительно центр, то самое короткое расстояние от О до любой стороны будет его перпендикуляром, и в нашем случае будет равно 8,5 см.
ответ:а) 34см,б)8,5см.
Объяснение:
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20