1) △BAO, △BCO равнобедренные (AE, EC являются одновременно медианами и высотами) => BA=OA, BC=OC OA=OB=OC (радиусы окружности) OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60) ∠ABC=∠ABO+∠OBC=120 ∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180) ∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC AH=AC/2 (в равнобедренном треугольнике высота является медианой) AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис. Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины. BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4 r= OH = BH*4/9 =4
Площадь формулы сектора выводится просто. пусть сектор составляет альфа градусов, тогда разбивая его на альфа равных секторов мы получим альфа секторов с углом один градус 360 таких секторов бы дали полную окружность, значит площадь одноградусного сектора равна 1/360 части площади окружности, площадь сектора с углом альфа градусов в альфа раз больше, поэтому равна альфа / 360 * площадь окружности. площадь окружности пи * r^2 окончательно получаем площадь сектора (альфа*пи*r^2)/360 если надо формулу площади сектора где альфа в радианах, то пользуемся тем, что 360 градусов это 2 пи радиан, заменяем 360 в знаменателе на 2 пи и получаем (альфа*пи*r^2)/(2пи) = (альфа*r^2)/2
OA=OB=OC (радиусы окружности)
OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60)
∠ABC=∠ABO+∠OBC=120
∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180)
∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC
AH=AC/2 (в равнобедренном треугольнике высота является медианой)
AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис.
Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4
r= OH = BH*4/9 =4
R= AB*BC*AC/2*S = AB*BC/2*BH = 15^2/2*9 =12,5
Проверка:
r*R= AB*BC*AC/2(AB+BC+AC)
15*15*24/2(15+15+24) = 50 = 4*12,5
пусть сектор составляет альфа градусов, тогда разбивая его на альфа равных секторов мы получим альфа секторов с углом один градус
360 таких секторов бы дали полную окружность, значит площадь одноградусного сектора равна 1/360 части площади окружности, площадь сектора с углом альфа градусов в альфа раз больше, поэтому равна альфа / 360 * площадь окружности.
площадь окружности пи * r^2
окончательно получаем площадь сектора (альфа*пи*r^2)/360
если надо формулу площади сектора где альфа в радианах, то пользуемся тем, что 360 градусов это 2 пи радиан, заменяем 360 в знаменателе на 2 пи и получаем
(альфа*пи*r^2)/(2пи) = (альфа*r^2)/2