1.25. Навколо трикутника описано коло. Чи можна стверджувати, що площина трикутника збігається з площиною: 1) яка проходить через деяку середню лінію трикутника;
2) яка проходить через медіану трикутника;
3) яка проходить через середини всіх сторін трикутника;
4) кола, вписаного у трикутник?
BC - гипотенуза треугольника ABC. Численно равна 30.
Пользуясь теоремой Пифагора запишем формулы для каждого из треугольников.
для большого треугольника ABC:
AB^2 + AC^2 = BC^2
для треугольника ABM:
AB^2 = AM^2 + BM^2
для треугольника AMC:
AC^2 = MC^2 + AM^2
подставляем два последних выражения в первое:
AM^2 + BM^2 + MC^2 + AM^2 = BC^2
преобразования:
2AM^2 + (24)^2 + (6)^2 = (30)^2
2AM^2 + 576 +36 = 900
2AM^2 = 288
AM^2 = 144
AM = 12
AB^2 = AM^2 + BM^2
AB^2 = 720
AB = 12*(5)^1/2
это означает 12 умножить на квдратный корень из 5
AC^2 = MC^2 + AM^2
AC^2 = 6*(5)^1/2
это означает 6 умножить на квдратный корень из 5
АС²=АВ*АН , ВС²=АВ*ВН и СН²=АН*ВН.
Таким образом, если АВ=54+96=150см (дано), то
АС=√(АВ*АН) = √(150*96) = 120см.
ВС=√(АВ*ВН) = √(150*54) = 90см.
Тогда периметр треугольника равен 150+120+90=360см.
ответ: Р=360см.
Второй вариант:
СН=√(96*54)=72см. Тогда из прямоугольных треугольников САН и СВН по Пифагору имеем:
АС=√(96²+72²)=√(9216+5184) = 120см
ВС=√(54²+72²)=√(2916+5184) = 90см.
Периметр: 150+120+90=360см.