По свойству равнобедренного треугольника высота, опущенная к основанию, является также биссектрисой и медианой. Так как угол, противолеж. основанию равен 120, то угол между высотой и боковой стороной треугольника равен 60ю Рассмотрим прямоугольный треугольник АНБ, где Н- точка пересечения высоты с основанием, А- вершина треугольника, противолежащая основанию. По свойству прямоуг. треугольника катет, лежащий напротив угла 30 градусов равен половине гипотенузы, а так как против угла 30 лежит высота АВС=9, то боковая сторона треугольника равна 18. Тогда по т. Пифагора 18^2=9^2+половина основания^2. И у меня в расчётах, видимо, что-то пошло не так, т.к ответ- удвоенный корень из 243.
Боковая сторона AD=26√3.
Угол DAB= 120 градусов.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180 градусов ⇒ угол АDC = 180 - 120 = 60 градусов.
Опустим высоту AE на основание трапеции CD. Получаем прямоугольный треугольник AED, где AD - гипотенуза, AE - катет, противолежащий углу ADE=ADC=60 градусов, DE - катет, прилежащий углу ADE.
AE = AD * sin (ADE)
AE = 26√3 * sin (60°) = 26√3 * √3/2 = 39 (см)
Площадь трапеции S = 1/2 * (a+b) * h, где a и b - основания трапеции, h - высота трапеции.
S = 1/2 * (AB + CD) * AE = 1/2 * (2 + 18) * 39 = 390 (см²)