1.3. А, В, С үш нүктесі бір түзу бойында жатады. AB 4,3 см, AC = 7,5 см, ВС = 3,2 см екені белгілі. А нүктесі В және С нүктелерінің арасында жатуы мүмкін бе? С нүктесі А және В нүктелерінің арасында жатуы мүмкін бе? А, В, С нүктелерінің қайсысы қалған екеуінің арасында жатады? Көмектесіңіздерші
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Объяснение:
В осевом сечении получится равнобедренный ΔКВМ , с АС║КМ, ВН⊥КМ ,S(м)=7π, ВО/ОН=1/3.
S(круга)= π r², 7π=πr² , r=√7 , АО=√7.
ΔАВО подобен ΔКВН по двум углам: ∠А-общий,∠ВАО=∠ВКН как соответственные при АС║КМ, ВК-секущая.Значит сходственные стороны пропорциональны :
АО/КН=1/4=АО/КН
1/4=√7/КН
КН=4√7.
S(нижнего основания конуса)= π(4√7)²=112π .
Полученное сечение(круг) параллельно плоскости основания(кругу). Они подобны с к=1/4. Значит их площади относятся как к²⇒
S(м):S(б)=к² или 7π/S(б)=1/16 , S(б)=7π*16=112π.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны, что следует из условия. Т.к. ∠А=∠А₁, ∠В=∠В₁, то треугольники АВС и А₁В₁С₁ подобны, а в подобных треугольниках сходственные стороны пропорциональны,
Значит, АВ=А₁В₁=ВС/В₁С₁⇒6/9=8/В₁С₁; В₁С₁=9*8/6=12/см/
6/9=АС/А₁С₁⇒АС=6*18/9=12/см/
Проверим пропорциональность сходственных сторон
АВ/А₁В₁=ВС/В₁С₁=АС/А₁С₁; 6/9=8/12=12/18.
Все отношения после сокращения дают 2/3, значит, найдены неизвестные стороны верно.