1.3 точки М вне плоскости проведены к этой плоскости перпендикуляр и уклона. Зная, что наклонная длиннее перпендикуляр на 25 см, а ее проекция на плоскость равна 65 см, найдите длину наклонной.
2. МВ перпендикуляр, проведенный с точки М до плоскости треугольника АВС.Поривняйте отрезки МА, МВ, МС. если треугольник АВС равнобедренный с углом 50 градусов при основании
3. Прямая СМ перпеидикулярна плоскости остроугольного треугольника АВС. СК-высота этого треугольника. Докажите, что прямые МК i АВ взаимно перпендикулярны
4. В треугольнике АВС
1.
Так как 2 внешних угла треугольника ABC друг другу равны(<CBM == <ACF), то вторая пара соседних вертикальных внешних углов тоже равна (<ABC == <ACB (рис.1)).
<ABC == <ACB => AC == AB.
P = 34 =>
P = 2x+12
P = 11+11+12 => AC == AB = 11.
Вывод: AB = 11.
2.
<ABC = 50° => <CBD = 180-50 = 130°
BC == BD => <BCD == <BDC (рис.2)
Так как углы равны, то каждый из них равен:
<BCD = (180-130)/2 = 25° => <BCD == <BDC = 25°
<ACB = 60°; <BCD = 25° => <ACD = 25+60 = 85°.
Вывод: <ACD = 85°.
5.
Чтобы сравнить стороны треугольника, надо сравнить углы, противоположные этим сторонам: <B = 70°; <C = 60° => <A = 180-(70+60) = 50°.
Самый маленький угол — <A. Ему противолежащая сторона — BC, которая самая маленькая, тоесть: BC < AB < AC (рис. 3).
Средний угол — <C = 60° ему противолежащая сторона — AB, тоесть: AB > BC < AC
Самый большой угол — <B = 70°, ему противолежащая сторона — AC, тоесть: AC > AB > BC.
6.
<B = 27° => <A = 90-27 = 63°
CK — биссектриса => <KCB == <ACK = 90/2 = 45°
<ADC = 90°; <A = 63° => <ACD = 90-63 = 27°
<ACD = 27° => <DCK = <ACK - <ACD = 45-27 = 18°
Вывод: <DCK = 18°.
Проведи диагонали АС и ВД. Угол С = 60 + 60 = 120 градусов, так как по условию диагонали есть биссектрисы. А мы знаем, что два угла прилежащие к одной стороне параллелограмма в сумме дают 180 градусов, значит у гол В = 180 - 120 = 60 градусов. Рассмотрим треугольник ВОС, Угол ВСО = 60 градусов, угол СВО = 30 градусов, так как ВД - не только диагональ, но и биссектриса.
Угол ВОС = 180 - 60 - 30 = 90 градусов, значит треугольник ВСО - прямоугольный. СО = 5 см, так как диагонали в точке пересечения делятся пополам 10 см : 2 = 5см.
Сторона, лежащая против угла в 30 градусов равна половине гипотенузы, Сторона СО = 5 см, она лежит против угла в 30 градусов, значит гипотенуза ВС = 10 см, т е . 5 * 2 = 10 см.
ответ: ВС = 10 см.