Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
Поскольку сечение осевое, сторона квадрата здесь является диаметром и высотой цилиндра.R основания цилиндра равен половине стороны квадрата. R=3 смПлощадь полной поверхности цилиндра равна сумме площадей 2-х оснований и площади боковой поверхности. Площадь боковой поверхности цилиндра = площади прямоугольника, одна из сторон которого равна высоте цилиндра, а другая - длине окружности основания. Высота цилиндра h известна, она равна 6 смL= 2πR=6 π смS боковой поверхности равна 6*6 π=36 π см²S каждого основания равна πR²= 9π см² Площадь полной поверхности цилиндраS полная =2*9π +36 π =54 π см²
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
ответ:12(см)