Делаешь чертеж, получается, что мо = 14 и о - точка пересечения диагоналей квадрата, мо перпендикулярно плоскости.( по условию м равноудалена от сторон, значит находится по центру) при этом, из м проводишь перпендикуляры к серединам сторон квадрата, которые равны 50. получаешь прямоугольный треугольник с гипотенузой 50 и катетом 14. соответственно другой катет по т. пифагора = 48. этот катет - половина стороны квадрата, т.к. если его продлить, то он пересечет др. соорону в точке, так же делящей сторону пополам. значит, прямая параллельна сторонам, а точка о делит ее пополам. следовательно, сторона квадрата = 48*2 = 96 сторона 96, тогда диагональ = корень из (2*96*96) = 96*корень из 2. расстояние от вершины до м = гипотенузе в треугольнике с катетами мо и тем, что равен половине диагонали (жиагональ до точки о), половина диагонали = 48*кор(2) таким образом, искомое расстояние = корень из (14*14+2*48*48)=кор(4804) ответ: сторона 96, расстояние кор(4804)
Треугольники Аа1В и Ав1В равны. У них общая сторона АВ, углы А и В равны, как у равнобедренного треугольника, стороны Ав1 и Ва1 равны. Из равенства этих треугольников имеем равенство углов в1ВА и а1АВ. Значит, треугольник АОВ равнобедренный. Угол в1ОА для него внешний. Он равен сумме двух внутренних не смежных с ним. Тогда углы ОАВ и ОВА равны по 30 градусов. Опускаем перпендикуляр из точки а1 на АВ. Получилась точка Д. Из треугольника Аа1Д АД=4,5, угол а1АВ равен 30, значит, Аа1 равна 4,5 разделить на косинус 30 = 4,5: (корень из 3 :2) = 3 корня из 3.