АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Рассмотрим ∆ АВН.
Угол ВАD=60°, АВ=АН/sin 60°=√3:(√3/2)=2 ⇒ АН=АВ•cos60°=2•0,5=1
Из прямоугольного ∆ ВНD по т.Пифагора ВD²=BH²+DH²=3+9=12
Найдем АС.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
ВD²+АС²=2•( AB²+AD²)
12+AC²+2•(4+16) ⇒ AC² =28 откуда AC=2√7 см
Опустим высоту СК на продолжение стороны АD.
∆ ABH=∆ CDK ( равные соответственные углы при А и D и равные катеты ВН=СК).⇒
AK=AD+DK=5⇒
АС=√(CK²+AD²)=√28=2√7 см
теорема косинусов, (угол АВD=180°-60°=120°). Вычисления приводить не буду, они дадут тот же результат.