Построение треугольника по стороне и двум прилежащим углам. Даны отрезок a и два угла - B и С. Требуется построить треугольник со стороной равной данному отрезку и двумя прилежащими углами, равными данным углам. Построим произвольный луч с началом в точке D - первый луч. Замерим циркулем отрезок a и на первом луче от его начала D тем же раствором циркуля отложим отрезок равный отрезку a - получилась точка E. И также получился второй луч ED - с началом в точке E. И теперь мы в одной и той же полуплоскости от луча DE отложим угол равный B и от луча ED отложим угол равный C. Произвольным раствором циркуля строим первую вс дугу окружности с центром в вершине угла B до пересечения со сторонами угла B (в точках F и G). Таким же раствором циркуля строим вторую вс дугу окружности с центром в точке D, пересекающую луч DE в точке H. Замеряем циркулем расстояние FG. Таким же раствором циркуля проводим третью дугу окружности с центром в точке H до пересечения со второй дугой и точку пересечения - K - соединяем с точкой D третим лучом DK. Полученный угол KDH между первым и третим лучами, равен углу B. Теперь снова произвольным раствором циркуля строим четвёртую вс дугу окружности с центром в вершине угла C до пересечения со сторонами угла C (в точках L и M). Таким же раствором циркуля строим пятую вс дугу окружности с центром в начале второго луча ED и пересекающую луч ED в точке N. Замеряем циркулем расстояние LM. Таким же раствором циркуля проводим шестую вс дугу окружности с центром в точке N до пересечения с пятой дугой в точке P - и точку P соединяем с точкой E лучом EP. Полученный угол NEP между вторым и четвёртым лучами равен углу C. Отрезок DE и лучи DK и EP образовали треугольник, в котором сторона равна отрезку a, а прилежащие к ней углы равны углам B и C. Построение закончено.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?
Даны отрезок a и два угла - B и С. Требуется построить треугольник со стороной равной данному отрезку и двумя прилежащими углами, равными данным углам. Построим произвольный луч с началом в точке D - первый луч. Замерим циркулем отрезок a и на первом луче от его начала D тем же раствором циркуля отложим отрезок равный отрезку a - получилась точка E. И также получился второй луч ED - с началом в точке E. И теперь мы в одной и той же полуплоскости от луча DE отложим угол равный B и от луча ED отложим угол равный C. Произвольным раствором циркуля строим первую вс дугу окружности с центром в вершине угла B до пересечения со сторонами угла B (в точках F и G). Таким же раствором циркуля строим вторую вс дугу окружности с центром в точке D, пересекающую луч DE в точке H. Замеряем циркулем расстояние FG. Таким же раствором циркуля проводим третью дугу окружности с центром в точке H до пересечения со второй дугой и точку пересечения - K - соединяем с точкой D третим лучом DK. Полученный угол KDH между первым и третим лучами, равен углу B. Теперь снова произвольным раствором циркуля строим четвёртую вс дугу окружности с центром в вершине угла C до пересечения со сторонами угла C (в точках L и M). Таким же раствором циркуля строим пятую вс дугу окружности с центром в начале второго луча ED и пересекающую луч ED в точке N. Замеряем циркулем расстояние LM. Таким же раствором циркуля проводим шестую вс дугу окружности с центром в точке N до пересечения с пятой дугой в точке P - и точку P соединяем с точкой E лучом EP. Полученный угол NEP между вторым и четвёртым лучами равен углу C. Отрезок DE и лучи DK и EP образовали треугольник, в котором сторона равна отрезку a, а прилежащие к ней углы равны углам B и C. Построение закончено.
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?