1. abc — равносторонний треугольник, точки m , n и k — серединные точки сторон. площадь треугольника mnk равна 17кв.ед.изм. определи площадь четырёхугольника ankm : кв.ед.изм. 2. площадь комнаты равна 27 м2 . можно ли разместить в комнате ковры 8 м2 ; 9 м2 и 11 м2 , чтобы ковры не перекрывались?
1) нет 2) да 3) нет 4) нет
Объяснение:
1) Если диагонали четырёхугольника взаимно перпендикулярны, то он может быть либо ромбом, либо квадратом. То есть не обязательно ромбом.
ответ: данное утверждение нельзя считать правильным.
2) У ромба все стороны равны между собой. Значит, его периметр всегда в 4 раза больше длины его стороны. А отношение 4 к 1 всегда равно 4.
ответ: это правильное утверждение.
3) Диагонали равны и у прямоугольника и у квадрата. Оба они четырёхугольники. Поэтому если диагонали у четырёхугольника равны, то он не обязательно должен быть прямоугольником, он может быть и квадратом.
ответ: данное утверждение нельзя считать правильным.
4) Это неправильно. Например, возьмём прямоугольник 5 х 10. Его периметр = 30 см, отношение 30 : 10 = 3. А в прямоугольнике 5 х 20 периметр равен 50, а отношение 50 : 20 = 2,5, а не 3, как было в первом расчете.
ответ: данное утверждение нельзя считать правильным.
1) нет 2) да 3) нет 4) нет
Объяснение:
1) Если диагонали четырёхугольника взаимно перпендикулярны, то он может быть либо ромбом, либо квадратом. То есть не обязательно ромбом.
ответ: данное утверждение нельзя считать правильным.
2) У ромба все стороны равны между собой. Значит, его периметр всегда в 4 раза больше длины его стороны. А отношение 4 к 1 всегда равно 4.
ответ: это правильное утверждение.
3) Диагонали равны и у прямоугольника и у квадрата. Оба они четырёхугольники. Поэтому если диагонали у четырёхугольника равны, то он не обязательно должен быть прямоугольником, он может быть и квадратом.
ответ: данное утверждение нельзя считать правильным.
4) Это неправильно. Например, возьмём прямоугольник 5 х 10. Его периметр = 30 см, отношение 30 : 10 = 3. А в прямоугольнике 5 х 20 периметр равен 50, а отношение 50 : 20 = 2,5, а не 3, как было в первом расчете.
ответ: данное утверждение нельзя считать правильным.