Треугольник АВС, АС - основание, АВ=ВС, МК средняя линия параллельна ВС = 13, соединяем точки К и Н - треугольник МНК - равнобедренный МК= КН, потому что треугольник АМК = треугольнику КНС, АК=КС, АМ=НС, угол А=углу С (по двум сторонам и углу)
В треугольнике готрезок КО (точка О - пересечение МН и ВК) - медиана, биссектриса, высота. Медиана ВК (высота, биссектриса) = 24 делится средней линией МН на две равные части, КО = 1/2 МК (свойства средней линии) = 24/2=12. В прямоугольном треугольнике МОК МО = корень (МК в квадрате - КО в квадрате)= корень (169 - 144) =5
Треугольник АВС, АС - основание, АВ=ВС, МК средняя линия параллельна ВС = 13, соединяем точки К и Н - треугольник МНК - равнобедренный МК= КН, потому что треугольник АМК = треугольнику КНС, АК=КС, АМ=НС, угол А=углу С (по двум сторонам и углу)
В треугольнике готрезок КО (точка О - пересечение МН и ВК) - медиана, биссектриса, высота. Медиана ВК (высота, биссектриса) = 24 делится средней линией МН на две равные части, КО = 1/2 МК (свойства средней линии) = 24/2=12. В прямоугольном треугольнике МОК МО = корень (МК в квадрате - КО в квадрате)= корень (169 - 144) =5
МН = 2 х МО = 2 х 5 =10
Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.