1.ΔАВС~ΔА1В1С1, АВ и А1В1 сходственные стороны треугольников, АВ:А1В1=4:3, АВ=16 см; АС=24см; ВС=32см. Найдите стороны ΔА1В1С1. 2. ΔMNK~ΔM1N1K1 , MN=10 см, MK=12см, NK=13см. Периметр ΔM1N1K1 равен 140 см2. Найдите стороны ΔM1N1K1. Найдите площадь ΔM1N1K1, если известно, что площадь ΔMNK равна 32,5 см2.
3.Докажите подобие треугольников АВС и КМN, если АВ=8 см, ВС=12 см, АС=16 см, КМ=10 см, МN=15 см, NK=20 см и найдите отношение периметров и площадей этих треугольников.
Очень легко показать, что внешний угол в правильном многоугольнике равен центральному углу в описанной окружности, опирающемуся на сторону. В самом деле, угол многоугольника равен 180 - Ф, если провести из центра радиусы в соседние вершины, то угол при основании в полученном равнобедренном треугольнике равен (180 - Ф)/2, сумма 2 углов при основании 180 - Ф, поэтому угол при вершине Ф.
Поскольку при Ф = 30 градусов число сторон N = 360/Ф = 12, то у в задаче задан правильный 12-угольник. Радиуc описанной окружности R = 4, и площадь каждого из 12 уже упоминавшихся треугольников равна R^2*sin(30)/2 = 4; площадь всего 12-угольника 4*12 = 48;
S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5Медиана BM и биссектриса AP треугольника АВС пересекаются в точке К, длина стороны АС втрое больше д