1)Бічна сторона рівнобедреного трикутника ділиться точкою дотику кола у відношенні 2 : 3, рахуючи віл вершини кута при основі трикутника. Знайдіть основу трикутника, якщо його бічна сторона дорівнює 15 см.
6 см
12 см
18 см
15 см
2)До кола, вписаного в рівнобедрений трикутник АВС, проведено дотичну, яка перетинає бічні сторони АВ і АС у точках М і К відповідно. Знайдіть периметр трикутника АВС, якщо периметр трикутника АМК дорівнює 14 см і АВ = АС = 10 см.
28 см
32 см
24 см
26 см
3)Коло, вписане в трикутник АВС, дотикається до сторони АВ у точці D. Знайдіть сторону ВС, якщо AD = 3 см, а периметр трикутника АВС дорівнює 22 см.
10 см
12 см
14 см
8 см
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
Объяснение:
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.