1.Биссектрисы острого и прямого треугольника
пересекается под углом равным 130 градусов.
Найти острые углы прямоугольного треугольника.
2.В прямоугольном треугольнике острый угол 60 градусов,
а биссектриса этого угла 8см.
Найти длину катета, который лежит напротив угла.
3.Доказать, что если медиана равна половине стороны, к которой она проведена, то угол против этой стороны равен 90 градусов.
Итак, сторона квадрата равна 100*√5,3 м.
Соответственно, половина стороны равна 50√5,3м.
Угол наклона бокового ребра к основанию - это угол в прямоугольном треугольнике с катетами: высота и половина стороны основания, а гипотенуза - апофема грани. Зная два катета - знаем тангенс угла наклона: tgα=h/(a/2) или 147/(50√5,3) = 1,28. Значит угол равен 52 градуса.
ответ: угол наклона боковой грани к плоскости основания пирамиды Хеопса равен 52°
Построим биссектрисы ВЕ и В1Е1. Рассмотрим треугольники АВЕ и А1В1Е1. Они также подобны, например, по стороне и двум прилежащим к ней углам:
- т.к. угол В равен углу В1, а ВЕ и В1Е1 - биссектрисы, то угол АВЕ будет равен углу А1В1Е1;
- углы А и А1 равны как соответственные у подобных треугольников АВС и А1В1С1;
- сторона АВ подобна стороне А1В1 по условию, и мы можем написать соотношение этих сторон как
АВ:А1В1=k, где k - коэффициент подобия.
Такое же соотношение сходственных сторон с тем же коэффициентом будет справедливо и для ВЕ и В1Е1 в треугольниках АВЕ и А1В1Е1:
ВЕ:В1Е1=k. Что и требовалось доказать.