1. боковое ребро наклонено к плоскости основания под углом 60°. найдите высоту призмы, если боковое ребро равно 6 см. 2. 2. в прямой треугольной призме все ребра равны. площадь ее боковой поверхности со-ставляет 27 см2. найдите площадь полной поверхности призмы.
1. 3√3 см
2. 27 + 4,5√3 см²
Объяснение:
1.
Так как решение не зависит от вида многоугольника, лежащего в основании призмы, рассмотрим для определенности треугольную призму.
А₁Н - высота призмы, АН - ее проекция на плоскость основания, значит ∠А₁АН = 60° - угол наклона бокового ребра к плоскости основания.
ΔА₁АН: ∠А₁НА = 90°,
см
2.
Так как все ребра равны, то боковые грани - 3 равных квадрата.
Пусть а - ребро призмы.
Sбок = 3 · а² = 27
а² = 9
а = 3 см
Основания призмы - правильные треугольники. Площадь одного основания:
Sполн = Sбок + 2·Sосн
Sполн = 27 + 2 · 9√3/4 = 27 + 4,5√3 см²