1. боковое ребро правильной треугольной призмы равно 4√3, сторона основания – 5 см. найдите объем призмы. а) 75√3 см3; б) 75 см3; в) 50√3 см3; г) 50 см3; д) 51,6 см3.
2. выберите верное утверждение.
а) объём прямой призмы, основанием которой является правильный восьмиугольник, вычисляется по формуле v=a2h(2√2+2), где а – сторона основания, h – высота призмы;
б) объём правильной треугольной призмы вычисляется по формуле v = a2h√3, где а – сторона основания , h – высота призмы;
в) объём прямой призмы равен половине произведения площади основания на высоту ;
г) объём правильной четырёхугольной призмы вычисляется по формуле v = 2a2∙h, где а – сторона основания, h – высота призмы;
д)объем прямой призмы, основанием которой является прямоугольный треугольник, равен половине произведения площади основания на высоту;
3. сторона основания правильной треугольной призмы равна 2 см. через сторону основания и противолежащую вершину верхнего основания проведена плоскость, которая находится под углом 60˚к основанию. найдите объём призмы.
а) 3√3/4см3; б) 3 см3; в) 3√3/2 см3; г) 3√3 см3; д) 3√3/8 см3.
4. основанием прямой призмы abcda1b1c1d1 является параллелограмм abcd, ab = 12 см, ad = 13 см. найдите объём призмы, если bad = 450 .
а) 180√3 см3; б) 900√2 см3; в) 180√2 см3; г) 450√3 см3; д) 450√2 см3.
5. найдите объём правильной четырехугольной призмы со стороной основания , равной – 2 , и высотой , равной √3.
а) 2√3; б) 12; в) 8√3; г) 4√3; д) 6.
6. основанием прямой призмы служит треугольник со сторонами 5, 5, 6. диагональ меньшей боковой грани составляет с плоскостью основания угол 30˚. найдите объём призмы. а) 40√3; б) 60√3; в) 20; г) 40; д) 20√3.
7. основание прямой призмы – параллелограмм, диагонали которого пересекаются под углом 60˚. найдите объём призмы, если площади его диагональных сечений равны 18 см2 и 24 см2, а высота – 3 см. а) 36√3 см3; б) 12 см3; в) 18√3 см3; г) 18 см3; д) 12√3 см3.
8. найдите с точностью до 0,001 объём правильной шестиугольной призмы со стороной основания, равной 4√√2 + 2 , и высотой, равной 3. а)14,402; б)14,401; в)26,611; г)26,612; д)14,40.
9. основанием прямой призмы служит прямоугольный треугольник. катеты основания и боковое ребро относятся между собой как 3: 4: 2. объём призмы равен 96. найдите площадь боковой поверхности призмы. а) 180; б) 96; в) 132; г) 160; д) 48.
10. найдите объём прямой призмы авса1в1с1, если acb = 900, cab =, bс = а и двугранный угол abca1 равен φ . а) v = 0,5a3ctg2tgφ; б) v = 0,25a3ctg2 tgφ;
в) v = 0,5a2ctg2 tgφ; г) v = a3ctg2tgφ; д) v = 0,5a3ctg2φtg.
Для вычисления поверхности, необходимо знать размер квадрата-основания призмы.
Диагональ призмы, ее вертикальное ребро и диагональ основания составляют прямоугольный треугольник с известными углом и длиной противолежащего катета (высота призмы).
Вторым катетом является диагональ основания, длиной (12·√2)·ctg30°=12·√2·√3=12·√6см.
Длина стороны квадрата-основания равна 12·√6·cos45°=12·√6·√2/2=6·√12см.
Площадь основания: (6·√12)²=36·12=432 см²
Площадь боковой грани: (12·√2)· (6·√12)=72√24 см²
Полная площадь поверхности: S=2·432+4·72√24=864+288√24≈864+1411=2275 см²
Прямоугольником с наибольшей площадью при заданным периметре является квадрат, значит текст должен занимать площадь квадрата.
Сторона квадрата площадью S равна √S.
Высота страницы равна √S+2a.
Ширина страницы равна √S+2b.
Соответственно отношение размеров страницы:
(√S+2a):(√S+2b).
Вывод: при полученном отношении печатный текст на странице будет занимать наибольшую площадь, а пустые поля - наименьшую.