Из точки А, не лежащей на окружности, проведены к окружности касательная и секущая. Расстояние от А до точки касания 12 см. Расстояние от A до одной из точек пересечения секущей с окружностью 24 см. Найдите радиус окружности, если секущая удалена от центра на 12 см.
В сантиметрах
По теореме о касательной и секущей
AT^2 =AN*AM => 12^2 =24*AM => AM =144/24 =6
MN =AN-AM =24-6 =18
Расстояние от точки до прямой - длина перпендикуляра.
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
Из точки А, не лежащей на окружности, проведены к окружности касательная и секущая. Расстояние от А до точки касания 12 см. Расстояние от A до одной из точек пересечения секущей с окружностью 24 см. Найдите радиус окружности, если секущая удалена от центра на 12 см.
В сантиметрах
По теореме о касательной и секущей
AT^2 =AN*AM => 12^2 =24*AM => AM =144/24 =6
MN =AN-AM =24-6 =18
Расстояние от точки до прямой - длина перпендикуляра.
OH⊥AN, OH=12
Перпендикуляр из центра к хорде делит ее пополам.
MH =MN/2 =9
По теореме Пифагора
OM =√(OH^2 +MH^2) =15 (см)
Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
4*9=6*х, х=6
СД=СМ+МД=6+6=12(см)