Нарисуй вектор а, отложи от его конца луч под углом к вектору а. Начало вектора в помести в конец вектора а и изобрази на луче вектор в, соедини начало вектора а и конец вектора в, получишь искомый вектор с = а + в и|с| = |а + в|
Обозначим единицу пропорции Х, У. Тогда АL=1Х, СL=2Х, ВД=2У, СД=3У. (смотри рисунок).Далее находим площадь LДС=36, и ВLC=60-поскольку высоты треугольников АВL и ВLС равны то их площади относятся как их основания. Затем воспользуемся свойством биссектрисы и найдём отношение ВЕ/ЕL=2/1. Также относятся и площади треугольников ВЕД и ЕДL. ответ Sедсl=44. Но это не сложное решение, во втором варианте приводится решение, когда мы не знаем , что АД-биссектриса. Тогда проводим МД параллельно АС и далее из подобия треугольников МЕД и АЕL находим необходимые соотношения. Треугольники эти подобны по трём углам. ответ тот же Sedcl=44.
Нарисуй вектор а, отложи от его конца луч под углом к вектору а. Начало вектора в помести в конец вектора а и изобрази на луче вектор в, соедини начало вектора а и конец вектора в, получишь искомый вектор с = а + в и|с| = |а + в|
Это называется векторным треугольником.
По теореме косинусов: |с|² = |а|² + |в|² - 2·|а|·|в|·cos 120°
|с|² = 25 + 64 - 2·5·8·(-0,5) = 129
|с|= |а + в|= √129
Вот если бы надо было найти разность векторов а и в, то получилось бы хорошее число:
|d| = |а-в| = √(25 + 64 + 2·5·8·(-0,5) = √49 = 7
Обозначим единицу пропорции Х, У. Тогда АL=1Х, СL=2Х, ВД=2У, СД=3У. (смотри рисунок).Далее находим площадь LДС=36, и ВLC=60-поскольку высоты треугольников АВL и ВLС равны то их площади относятся как их основания. Затем воспользуемся свойством биссектрисы и найдём отношение ВЕ/ЕL=2/1. Также относятся и площади треугольников ВЕД и ЕДL. ответ Sедсl=44. Но это не сложное решение, во втором варианте приводится решение, когда мы не знаем , что АД-биссектриса. Тогда проводим МД параллельно АС и далее из подобия треугольников МЕД и АЕL находим необходимые соотношения. Треугольники эти подобны по трём углам. ответ тот же Sedcl=44.