1. дан отрезок ab. его длина 12 см. на отрезке ab взята точка k. вычислите kb, если: а) ka = 1 см; б) kb = 2ka в) расстояние от точки k до точки a на 1 см больше расстояния от точки k до точки b; г) расстояние от точки k до точки c, середины отрезка ab, равно 1 см. 2.(градус отмечается - *, угол - < ) постройте угол ab с вершиной в точке o величиной 120* пусть луч с выходит из точки о и лежит внутри угла ab. вычислите
Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).
8.2.
Построим точки A1 и B1 на сторонах BC и AC соответственно так, что BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 : 2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.
8.3.
Пусть O — центр данной окружности, AB — хорда, проходящая через точку P, M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.
8.4.
Пусть R — радиус данной окружности, O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.
8.5.
Пусть R — радиус окружности S, O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса
Ц
R2 – d2/4
с центром O.
8.6.
Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,
SR
EC
= PQ
EC
= BQ
BC
= FR
FC
, т. е. точка S
ответ:Сторона квадрату дорівнює 4см, а сторона рівновеликого йому прямокутника – 8см. Знайти другу сторону прямокутника.=35
Знайти площу ромба, сторона якого дорівнює 2√2 см, а один з його кутів дорівнює 45˚.=2,7
В прямокутному трикутнику висота, що проведена до гіпотенузи, ділить її
а відрізки 16см і 9см. Обчисліть площу трикутника.=8,14
В паралелограмі бісектриса гострого кута, який дорівнює 60˚, ділить сторону на відрізки 33см і 55см, починаючи від вершини тупого кута. Знайти площу і периметр паралелограму=7,4
Точка дотику кола, вписаного в рівнобічну трапецію, ділить бічну сторону у відношенні 9:4. Обчисліть периметр і площу трапеції, якщо довжина вписаного в неї кола дорівнює 24π см=0,7