Если нельзя применить теоремы синусов и косинусов, то, скорее всего, можно применить теорему Пифагора.
Пусть высота треугольника АВС из точки А равна Н.
Опустим из основания биссектрисы перпендикуляр h на сторону ВС.
Из подобия треугольников имеем h/H = 4/20 = 1/5,
По Пифагору находим:
Н = √(20² - (5/2)²) = √(400 - (25/4) = √(375/4) = 15√7/2.
Теперь получаем: h = (1/5)*(15√7/2) = 3√7/2.
Длину биссектрисы L тоже определяем по Пифагору.
Проекция её на ВС равна (5/2) + (4/5)*(5/2) = 9/2.
L = √((9/2)² + h²) = √((81/4) + (63/4)) = √(144/4 = √36 = 6.
ответ: длина биссектрисы равна 6.
основание параллелепипеда тоже ромб со стороной а и углом 60° (градусов).
этот ромб состоит из двух РАВНОСТОРОННИХ треугольников
малая диагональ основания d = a, т. к. это сторона РАВНОСТОРОННего треугольника
большая диагональ основания по теореме косинусов
D^2 = a^2 +a^2 - 2*a^2 *cos120 = 2*a^2 (1 -cos120)=2*a^2 (1 -(-1/2))=3a^2
cos 120 Град = - cos 60 град = - 1/2
D = a√3
высота параллелпипеда h = a*sin60 =a√3/2
площадь диагональных сечений
большое сечение S =D*h = a√3 *a√3/2 = 3/2*a^2 = 1.5a^2
малое сечение s =d*h = a *a√3/2 = a^2√3/2
Если нельзя применить теоремы синусов и косинусов, то, скорее всего, можно применить теорему Пифагора.
Пусть высота треугольника АВС из точки А равна Н.
Опустим из основания биссектрисы перпендикуляр h на сторону ВС.
Из подобия треугольников имеем h/H = 4/20 = 1/5,
По Пифагору находим:
Н = √(20² - (5/2)²) = √(400 - (25/4) = √(375/4) = 15√7/2.
Теперь получаем: h = (1/5)*(15√7/2) = 3√7/2.
Длину биссектрисы L тоже определяем по Пифагору.
Проекция её на ВС равна (5/2) + (4/5)*(5/2) = 9/2.
L = √((9/2)² + h²) = √((81/4) + (63/4)) = √(144/4 = √36 = 6.
ответ: длина биссектрисы равна 6.
основание параллелепипеда тоже ромб со стороной а и углом 60° (градусов).
этот ромб состоит из двух РАВНОСТОРОННИХ треугольников
малая диагональ основания d = a, т. к. это сторона РАВНОСТОРОННего треугольника
большая диагональ основания по теореме косинусов
D^2 = a^2 +a^2 - 2*a^2 *cos120 = 2*a^2 (1 -cos120)=2*a^2 (1 -(-1/2))=3a^2
cos 120 Град = - cos 60 град = - 1/2
D = a√3
высота параллелпипеда h = a*sin60 =a√3/2
площадь диагональных сечений
большое сечение S =D*h = a√3 *a√3/2 = 3/2*a^2 = 1.5a^2
малое сечение s =d*h = a *a√3/2 = a^2√3/2