1)дан произвольный четырёхугольник abcd и прямая a, содержащая диагональ этого треугольника. постройте фигуру f, на которую отображается данный четырёхугольник при осевой симметрии с осью a. (с рисунком)2)дана произвольная трапеция abcd. постройте фигуру f, симметричную данной трапеции относительно точки r, лежащей внутри данной трапеции. (с рисунком)
––––––––––––––––––
См. рисунок приложения.
Расстояние от точки до прямой - перпендикуляр.
Пусть точка пресечения перпендикуляра из С с биссектрисой угла А будет Е, а из вершины В - К.
В ⊿ СЕА катет СЕ равен половине гипотенузы СА. Это - свойство катета, противолежащего углу, равному 30°.
Следовательно, ∠САЕ=30°
Тогда ∠ВАК треугольника ВКА равен 30°, т.к. АЕ - биссектриса ∠ ВАС, и∠ВАЕ=∠САЕ=30°
Отсюда ∠ВАС=60°
Тогда СА противолежит углу В, который равен 30°, и гипотенуза ВА треугольника АВС=2 СА=8.
В ⊿ ВКА катет ВК противолежит углу 30°. По свойству такого катета ВК равен АВ:2=4 (ед. длины)
Диагональ основания призмы ВD параллельна диагонали сечения ЕЕ1 (доказывать не надо). Тогда ВЕ=ОО1, а искомое расстояние от В до плоскости АЕС1 равно перпендикуляру ОН, основание которого Н лежит на диагонали призмы АС1. В треугольнике ОНО1 угол <НОО1 равен углу треугольника АСС1 <CAC1, как углы с соответственно перпендикулярными сторонами. Cos(<CAC1)=АС/АС1.
АС - диагональ основания призмы (квадрата) и равна 4√2.
АС1 - диагональ призмы (и диагональ сечения) и равна √(АС²+СС1²)=√(32+4)=6. Тогда Cos(<СAC1)=4√2/6=2√2/3.
В треугольнике ОНО1: ОН=ОО1*Cos(<HOO1)=1*2√2/3=2√2/3.
ответ: искомое расстояние равно 2√2/3.
Координатный метод: поместим начало координат в точку В. Пусть ВС- ось X, BB1- ось Y, BA - ось Z.
Мы имеем:
Точки А(0;0;4)В(0;0;0), Е(0;1;0), C1(4;2;0).
Теперь можем написать уравнения плоскости, проходящей через 3 точки и найти расстояние от точки В до плоскости АЕС1.
Для составления уравнения плоскости АЕС1 используем формулу:
|x - xА xЕ - xА xС1 - xА|
|y - yА yЕ - yА yС1 - yА| = 0.
|z - zА zЕ - zА zС1 - zА|
Подставим данные трех наших точек А,Е и С1:
|х-0 0 4 |
|y-0 1 2 | = 0.
|z-4 -4 -4 |
Раскрываем определитель по первому столбцу, находим уравнение
плоскости:
| 1 2 | | 0 4 | |0 4|
х*|-4 -4 | - y*|-4 -4 | + (z-4)*|1 2| =0.
Или:
x(-4+8)- y(0+16) +(z-4)(0-4)=0 или 4x-16y-4z+16=0 или x-4y-z+4=0.
Итак, имеем плоскость в виде Ax+By+Cz+D=0:
x-4y-z+0=0, где А=1, В=-4, С=-1, D=4 и точку В(0;0;0).
Надо найти расстояние от этой точки до плоскости.
Если задано уравнение плоскости Ax + By + Cz + D = 0, то расстояние от точки В(Вx, Вy, Вz) до плоскости можно найти, используя следующую формулу:
d=|A*Bx+B*By+C*Bz+D|/√(A²+B²+C²); В нашем случае:
d=|4|/√(1+16+1)=4/(3√2)=2√2/3.
ответ: расстояние от В до плоскости АЕС1 равно 2√2/3.