В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

1) Дан прямоугольный параллелепипед с ребрами 5 см, 8 см и 7 см. Найдите его объём.

2) Основание прямой призмы прямоугольный треугольник с катетом 8 см и гипотенузой 10 см. Найдите объём призмы, если её наименьшее грань квадрат.

РЕШЕНИЕМ

Показать ответ
Ответ:
tanya732
tanya732
02.02.2022 04:18
Формула радиуса описанной окружности для равнобедренного треугольника:
R=a²/√(4a²-b²), где a - боковая сторона треугольника, b - его основание.
Подставим известные значения: 16=a²/√(4a²-240). Пусть а²=Х.
Возведем обе части уравнения в квадрат:
256=Х²/(4Х-240). Имеем квадратное уравнение: Х²-1024Х+61440=0.
Отсюда  Х=512±√(512²-61440)=512±√(512²-61440)=512±448.
Х1=960; Х2=64. Тогда а1=8√15; а2=8.
Но при боковой стороне треугольника равной 8 треугольник получается ТУПОУГОЛЬНЫМ. (По признаку существования треугольника: "если с - большая сторона и если a² + b² < c², то треугольник тупоугольный", а в нашем случае 64+64<240). Значит а=8 нас не удовлетворяет, так как не выдерживается условие, что треугольник ОСТРОУГОЛЬНЫЙ.
Центр описанной окружности треугольника лежит на пересечении серединных перпендикуляров к его сторонам. Тогда расстояние от центра до боковой стороны найдем из прямоугольного треугольника АНО, в котором гипотенуза - радиус описанной окружности, а катет - половина боковой стороны.
OH=√[R²-(a/2)²]=√(256-240)=4.
ответ: расстояние от центра окружности до боковой стороны равно 4.

Равнобедренный остроугольный треугольник с основанием 4 корень 15 вписан в окружность радиуса 16. на
0,0(0 оценок)
Ответ:
llleeennn
llleeennn
01.06.2021 23:24
Пусть внешняя точка будет А,
точки касания с одной из касательных большей окружности -М, меньшей -Н, центр большей окружности - В, меньшей - С, точка касания окружностей -К, радиус большей окружности R, меньшей- r. 
По условию АС=6, АВ=18 
Отсюда R+r=18-6=12 
R=12-r 
Проведем к точкам касания каждой окружности радиусы.
 Радиус, проведенный к точке касания, перпендикулярен касательной.     Треугольники АМВ и АНС подобны - прямоугольные с общим углом при А. 
Из их подобия следует отношение: 
АС:АВ=СН:ВМ 
6:18=r:(12-r) 
6*12-6r=18r, откуда r=3 ⇒
R=12-3=9

Из внешней точки к окружности проведены две касательные и в фигуру ,ограниченную дугой окружности и
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота