1)Дан шар с радиусом 6 см.
Если переплавить этот шар, на выплавку скольких шаров с радиусом 4 см хватит материала?
ответ: материала хватит на выплавку
шар(-ов, -а). 2)Диагональ осевого сечения цилиндра равна 10 см, с основанием цилиндра она образует угол в 60°.
Определи диаметр основания D этого цилиндра.
ответ: D =
см. 3)Для летнего фестиваля необходимо построить навес в виде конуса диаметром 6 м, высотой 4 м.
Сколько м2 ткани надо купить для навеса?
(π≈3,14, результат округли до целых, учитывая реальную ситуацию.)
ответ: необходимо купить
м2 ткани.
АА1 = х, АД = у.
Если диагонали BD1 и A1C взаимно перпендикулярны, то они определяют фигуру - ромб.
Диагональ боковой грани А1В - это гипотенуза в треугольнике А1ОВ и равна √(3²+4²) = 5 см.
В свою очередь А1В =√(3²+х²).
Приравняем √(3²+х²) = 5 3²+х² = 25 х² = 25-9 = 16 х = 4 см.
В ромбе А1ВСД1 сторона А1В равна ребру параллелепипеда А1Д1 и равна 5 см.
Диагональ основания ВД = √(ВД1²-х²) = √(36-16) = √20 = 2√5 = 4.472136
Площадь основания равна двум площадям треугольника АВД, которую определяем по формуле Герона:
So =2√(р(р-a)(p-b)(p-c)) =2*6.6332 = 13.2665 см², здесь
р = 6.236068 см, a = 3 cм, в = 5 см, с = 4.472136 см.
Тогда объём параллелепипеда V = So*x = 13,2665*4 = 53.066 cм³.
АА1 = х, АД = у.
Если диагонали BD1 и A1C взаимно перпендикулярны, то они определяют фигуру - ромб.
Диагональ боковой грани А1В - это гипотенуза в треугольнике А1ОВ и равна √(3²+4²) = 5 см.
В свою очередь А1В =√(3²+х²).
Приравняем √(3²+х²) = 5 3²+х² = 25 х² = 25-9 = 16 х = 4 см.
В ромбе А1ВСД1 сторона А1В равна ребру параллелепипеда А1Д1 и равна 5 см.
Диагональ основания ВД = √(ВД1²-х²) = √(36-16) = √20 = 2√5 = 4.472136
Площадь основания равна двум площадям треугольника АВД, которую определяем по формуле Герона:
So =2√(р(р-a)(p-b)(p-c)) =2*6.6332 = 13.2665 см², здесь
р = 6.236068 см, a = 3 cм, в = 5 см, с = 4.472136 см.
Тогда объём параллелепипеда V = So*x = 13,2665*4 = 53.066 cм³.