Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
1. Построила на рисунке. Масштаб фотографии разный у всех, я взяла длину основания 4см и длину биссектрисы 3см. Свойством пользовалась тем, что в равнобедренном треугольнике биссектриса, проведённая к основанию, является его медианой. Построила медиану по алгоритму построения середины отрезка.
2. Треугольник равнобедренный, т.к. ВО⊥АС, угол АВО=СВО, АО=ОС. Можно измерить сторону и биссектрису. Всё соблюдается.
3. Задача будет иметь решение в том случае, если при построении сумма двух любых сторон треугольника будет больше длины третьей стороны. Т.е. основание не должно быть дано длиннее, чем сумма боковых сторон.
Проведем из вершины В треугольника АВС высоту ВН к основанию АС.
Так как, по условию, АВ = ВС, то треугольник АВС равнобедренный, а высота ВН в равнобедренном треугольника, так же является и медианой. Тогда АД = СД = АС / 2 = 12 / 2 = 6 см.
Рассмотрим прямоугольный треугольник АВД, и по теореме Пифагора определим длину катета ВН.
ВН2 = АВ2 – АД2 = 100 – 36 = 64.
ВН = 8 см.
Рассмотрим треугольный треугольник ДВН и по теореме Пифагора определим длину гипотенузы ДН.
ДН2 = ДВ2 + ВН2 = 152 + 82 = 225 + 64 = 289.
ДН = 17 см.
ответ: Расстояние от точки Д до прямой АС равно 17 см.
1. Построила на рисунке. Масштаб фотографии разный у всех, я взяла длину основания 4см и длину биссектрисы 3см. Свойством пользовалась тем, что в равнобедренном треугольнике биссектриса, проведённая к основанию, является его медианой. Построила медиану по алгоритму построения середины отрезка.
2. Треугольник равнобедренный, т.к. ВО⊥АС, угол АВО=СВО, АО=ОС. Можно измерить сторону и биссектрису. Всё соблюдается.
3. Задача будет иметь решение в том случае, если при построении сумма двух любых сторон треугольника будет больше длины третьей стороны. Т.е. основание не должно быть дано длиннее, чем сумма боковых сторон.