1)Дан треугольник ABC с вершинами А (11;-2;-9), В (2;6;-4) С (8;-6;-8)
а) Найдите координаты середины отрезка ВС
б) Найдите координаты и длины вектора ВС
в) Найдите вектор АВ + ВС
г) Докажите перпендикулярность векторов АВ и АС
2)Даны вершины треугольника А (1 3 0) В (1 0 4) С (-2 1 6) Найти косинус угла А этого треугольника
3)Даны три вершины параллелограмма АВСД А (0 2 -3)В (-1 1 1)С (2 -2 -1)Найдите координаты четвертой вершины Д
СМ и ДМ - биссектрисы.
АМ||СД, СМ - секущая.
Накрестлежащие углы при пересечении параллельных прямых секущей равны. Угол ВМС=углу МСД.
Но так как СМ биссектриса и угол МСД=ВСМ, то все эти три угла равны. Из равенства углов при основании СМ треугольника МВС следует. что этот треугольник - равнобедренный. МВ=Вс=26.
Точно также доказывается равенство сторон АМ и АД треугольника АМД.
Следовательно, большая сторона АВ=СД=АМ+МВ=26+26=52.
--------
Замечу, что биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( иногда сюда входят продолжения сторон). Это свойство биссектрисы пригодится при решении многих задач.
Точка пересечения биссектрисс делит противоположную сторону на два отрезка, каждый из которых вместе с соседней боковой стороной и самой биссектриссой образует треугольник. Оба эти треугольника - равнобедренные, поскольку угол, который биссектриса образует с противоположной стороной, является внутренним накрест лежащим для одного из двух равных углов, на которые она - биссектриса - делит угол параллелограмма.
Поэтому оба треугольника равнобедренные, и оба отрезка противоположной стороны равны соседним боковым сторонам.
То есть большая сторона равна 26 + 26 = 52