1) Дан треугольник abc, угол с = 90°, угол а = 30°, ас = 5, dc = 5√3/2 (пять корней из трех пополам), dc⊥(abc). Найти: угол между плоскостями adc и acb.
2) Дан прямоугольный параллелепипед abcda1b1c1d1. ab = 8, cb = 9, aa1 = 12. найти: а) acd1 -? б) площадь треугольника acd1.
благодарю.
Объяснение:
1. Учитывая, что согласно теореме Пифагора сумма квадратов катетов равна квадрату
гипотенузы, вычисляем длину гипотенузы АВ прямоугольного треугольника АВС:
АВ^2 = АС^2 + ВС^2
АВ - √АС^2 + ВСАС^2 = √5^2 + (5√3)^2 = √25 + 25 х 3 = √100 = 10 сантиметров.
2. Отношение катета АС к гипотенузе АВ является синусом угла АВС.
3. Синус угла АВС = АС/АВ = 5 : 10 = 1/2.
Угол АВС = 30°.
ответ: длина гипотенузы АВ равна 10 сантиметров, угол АВС = 30°.