1 Дан вектор a→ (6; 8). Вычисли ∣∣a→∣∣= 2 1). A(3;−8) и B(3;8); |AB| =
2). M(8;3) и N(−8;3); |MN| =
3 а→{8;6} ∣∣a→∣∣=
b→{6;8} ∣∣∣b→∣∣∣=
c→{8;15} ∣∣c→∣∣=
d→{15;8} ∣∣∣d→∣∣∣=
4 1). Даны координаты вектора и конечной точки этого вектора. Определи координаты начальной точки вектора.
AB−→−{1;−6}.
B(−7;8); A(?)
2). Даны координаты вектора и начальной точки этого вектора. Определи координаты конечной точки вектора.
MN−→−{−9;9}.
M(−6;−10); N(?)
ол казир келеди 9 жарымда мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати
Объяснение:
кек алу керек кой 50 мыңға жуық адам қатысты мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен Бахтыбай Іңкармын тәти мен айтсам болама тати мен
неге басылмай жатыр деп балаларда жиі кездеседі деп аталады және ол казир келеди 9 жарымда мен екі күн бойы жотеледи мен Бахтыбай Іңкармын тәти мен айтсам болама
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).