Квадрат это ромб у которого все углы прямые или прямоугольник у которого смежные стороны равны. Можно конечно построить график и доказать на полученном чертеже , мол стороны попарно параллельны и все стороны равны. А можно найти длины каждой стороны ( например АВ , АВ имеет координаты ( из координаты конца, отнимаем соответствующие координаты начала, АВ( 5-1;2-2) АВ(4;0). А длина АВ находится как корень квадратный из суммы квадратов координат АВ=√4²+0²=4, аналогично с другими сторонами). А если посмотреть внимательно на координаты точек, то можно увидеть , что АС и ВД соответственно лежат на прямых х=1 и х=5, которые параллельны оси ОУ, а значит и друг другу. А АВ и СД на прямых у=2 и у=-2, параллельных оси ОХ, а значит и друг другу. Получаем, что у данного четырехугольника все стороны равны и попарно параллельные + все углы прямые, т.е мы получили квадрат ч.т.д.
В равнобедренном треугольнике ABC к основанию AC проведена биссектриса BK. Периметр треугольника ABK равен 12 см, а периметр треугольника ABC равен 20 см.
Пусть стороны АВС равны а,в и с. Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h. Составим систему уравнений на основе данных задания. Р(АВК) = с + h +(b/2) = 12. P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10. Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
Можно конечно построить график и доказать на полученном чертеже , мол стороны попарно параллельны и все стороны равны.
А можно найти длины каждой стороны ( например АВ , АВ имеет координаты ( из координаты конца, отнимаем соответствующие координаты начала, АВ( 5-1;2-2) АВ(4;0). А длина АВ находится как корень квадратный из суммы квадратов координат АВ=√4²+0²=4, аналогично с другими сторонами).
А если посмотреть внимательно на координаты точек, то можно увидеть , что АС и ВД соответственно лежат на прямых х=1 и х=5, которые параллельны оси ОУ, а значит и друг другу. А АВ и СД на прямых у=2 и у=-2, параллельных оси ОХ, а значит и друг другу. Получаем, что у данного четырехугольника все стороны равны и попарно параллельные + все углы прямые, т.е мы получили квадрат ч.т.д.
Пусть стороны АВС равны а,в и с.
Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h.
Составим систему уравнений на основе данных задания.
Р(АВК) = с + h +(b/2) = 12.
P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10.
Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
ответ: длина биссектрисы BK равна 2 см.