1.Дано: А (0;6),Б(0;2).АБ-Диаметр Найти: Радиус,координаты центра и составить уравнение 2.Дано: А(-2;0) Б(4;0) Найти: Радиус,координаты центра и составить уравнение 3. Составьте уравнение окружности с центром А(3;2),Прохлдящий через точку Б(7;5)
Т.е. R/r=2. А так как площадь круга имеет квадратичную зависимость от радиуса окружности, то и площадь вписанной окружности будет в 2²=4 раз меньше, чем площадь описанной.
Найдем R из длины описанной окружности: R=24π/2π=12 (см)
Найдем площадь описанной окружности:
S₀=πR²=144π, значит площадь вписанной окружности
S₁=144π/4=36π.
Площадь кольца равна разности площадей описанной и вписанной окружностей:
Скрещивающиеся прямые, это прямые, которые не лежат в одной плоскости. а) Предположим, это не так. Тогда МА и ВС лежат в одной плоскости. Знасит МА и ВС пересекабтся или параллельны. Если они пересекаются, то прямая МА имеет ещё одну общую точку с плоскостью АВСD и значит, лежит в этой плоскости. Противоречие. Если же АМ параллельна ВС, То АМ и ВС образуют плоскость АМВС. Эта плоскости пересекает плоскость АВСD по прямой ВС и имеет с ней общую точку М. Значит эти плоскости совпадают. Значит МА лежит в плоскости АВСD. Противоречие. Наше предположение неверно, МА и ВС - скрещивающиеся прямые. б)Угол МАD - угол между векторами АМ и АD. Но вектор СВ равен вектору АD, поэтому угол между АМ и СВ равен 45 градусов
Радиус описанной окружности равностороннего треугольника R=a/√3 (где а-сторона треугольника)
Радиус вписанной окружности равностороннего треугольника r=a/2√3 .
Т.е. R/r=2. А так как площадь круга имеет квадратичную зависимость от радиуса окружности, то и площадь вписанной окружности будет в 2²=4 раз меньше, чем площадь описанной.
Найдем R из длины описанной окружности: R=24π/2π=12 (см)
Найдем площадь описанной окружности:
S₀=πR²=144π, значит площадь вписанной окружности
S₁=144π/4=36π.
Площадь кольца равна разности площадей описанной и вписанной окружностей:
S₀₋₁=S₀-S₁=(144-36)π=108π см²
ответ: площадь кольца 108π см²
Скрещивающиеся прямые, это прямые, которые не лежат в одной плоскости.
а) Предположим, это не так. Тогда МА и ВС лежат в одной плоскости. Знасит МА и ВС пересекабтся или параллельны. Если они пересекаются, то прямая МА имеет ещё одну общую точку с плоскостью АВСD и значит, лежит в этой плоскости. Противоречие. Если же АМ параллельна ВС, То АМ и ВС образуют плоскость АМВС. Эта плоскости пересекает плоскость АВСD по прямой ВС и имеет с ней общую точку М. Значит эти плоскости совпадают. Значит МА лежит в плоскости АВСD. Противоречие. Наше предположение неверно, МА и ВС - скрещивающиеся прямые.
б)Угол МАD - угол между векторами АМ и АD. Но вектор СВ равен вектору АD, поэтому угол между АМ и СВ равен 45 градусов