В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
linagaribyan
linagaribyan
22.09.2022 16:46 •  Геометрия

1)Дано: a{2;-5}, b{-5;2}, v=3a-3b Найдите: а)координаты v; б) длину v . Разложите c по координатным векторам i и j.
2)дано A(9;-2) и B(-1;-2) - Концы Диаметра окружности
а) Найдите координаты цента окружности
б) Запишите уравнение этой окружности

Показать ответ
Ответ:
2003Ivann
2003Ivann
25.12.2023 20:12
1) Найдем координаты v:
У нас есть: a{2;-5}, b{-5;2}, v=3a-3b

Чтобы найти координаты v, нужно вычислить каждую координату отдельно.
Координата v по оси x равна 3a_x - 3b_x, где a_x и b_x - соответствующие координаты векторов a и b.
То есть, в нашем случае, v_x = 3*2 - 3*(-5) = 6 + 15 = 21.

Координата v по оси y равна 3a_y - 3b_y, где a_y и b_y - соответствующие координаты векторов a и b.
В нашем случае, v_y = 3*(-5) - 3*2 = -15 - 6 = -21.

Таким образом, координаты v равны {21; -21}.

b) Найдем длину v:
Длина вектора v можно найти по формуле |v| = sqrt(v_x^2 + v_y^2), где v_x и v_y - координаты вектора v.

В нашем случае, |v| = sqrt(21^2 + (-21)^2) = sqrt(441 + 441) = sqrt(882) = 2sqrt(441) = 2*21 = 42.

Таким образом, длина вектора v равна 42.

c) Разложение v по координатным векторам i и j:
Разложение вектора v по координатным векторам i и j можно выразить следующим образом: v = v_x * i + v_y * j.

В нашем случае, v = 21 * i - 21 * j.

2) Найдем координаты центра окружности:
У нас даны концы диаметра окружности A(9;-2) и B(-1;-2).

Для того, чтобы найти координаты центра окружности, нужно найти среднее значение координат концов диаметра.
Центр окружности будет находиться точно посередине между координатами A и B.

Координата центра окружности по оси x будет равна среднему значению координат A_x и B_x.
То есть, x_центр = (A_x + B_x) / 2 = (9 + (-1)) / 2 = 8/2 = 4.

Координата центра окружности по оси y будет равна среднему значению координат A_y и B_y.
В нашем случае, y_центр = (A_y + B_y) / 2 = (-2 + (-2)) / 2 = -4/2 = -2.

Таким образом, координаты центра окружности равны {4; -2}.

б) Запишем уравнение этой окружности:
Уравнение окружности имеет вид (x - x_центр)^2 + (y - y_центр)^2 = r^2, где x_центр и y_центр - координаты центра окружности, r - радиус окружности.

Радиус окружности можно найти, используя расстояние между центром окружности и одним из ее концов диаметра.
В нашем случае, мы можем использовать расстояние между центром окружности и точкой A.

Расстояние между двумя точками можно найти с помощью формулы d = sqrt((x2 - x1)^2 + (y2 - y1)^2), где (x1, y1) и (x2, y2) - координаты двух точек.

В нашем случае, d = sqrt((x_центр - A_x)^2 + (y_центр - A_y)^2) = sqrt((4 - 9)^2 + (-2 + 2)^2) = sqrt((-5)^2 + 0^2) = sqrt(25 + 0) = sqrt(25) = 5.

Таким образом, радиус окружности равен 5.

Теперь мы можем записать уравнение окружности: (x - 4)^2 + (y + 2)^2 = 5^2.

Окончательно, уравнение окружности имеет вид (x - 4)^2 + (y + 2)^2 = 25.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота