1. Дано: ∠BAD = ∠BCD = 90°, ∠ADB = 15°, ∠BDC = 75° (рис. 4.245). Доказать: AD || ВС.
2. В треугольнике ABC ∠C = 60°, ∠B = 90°. Высота ВВ1 равна 2 см Найти: АВ.
3. Постройте равнобедренный треугольник по основанию и высоте, проведенной к нему из вершины треугольника.
* С циркуля и линейки постройте угол, равный 150°.
α-тупой угол, диагональ АС разбивает параллелограмм на два равных треугольника, в треугольнике АВС есть три угла α;β; (180-(α+β)); sin(180-(α+β))=sin(α+β)=sinα*cosβ+sinβ*cosα
cosβ=√(1-sin²β)=√(1-64/289)=√(225/289)=15/17;
cosα=-√(1-sin²α)=-√(1-144/169)=-√(25/169)=-5/13;
sin(α+β)=(12/13)*(5/17)-(8/17)*(5/13)=(60-40)/(17*13)=20/(17*13);
По следствию из теоремы синусов АС/sin(180-(α+β))=BC/sinα=AB/sinβ;
5/(20/17*13)= BC/sinα; BC=5*17*13*12/(13*20)=51
5/(20/17*13)=AB/sinβ; АВ=5*17*13*8/(17*20)=26
Значит, площадь равна АВ*АС*sin(α+β)=51*26*(20/17*13)=120
ответ 120,00
Посмотрел на задание, которое Вам предложили в качестве решения в комментариях. Проверил. ответ тот же. )
Объяснение:
піраміда КАВСД, К-вершина, АВСД-квадрат, О-центр основи-перетин діагоналей, КА=КВ=КС=КД=8, кут КАС=60=кут КСА, тоді кут АКС в трикутнику АКС=180-60-60=60, трикутник АКС рівносторонній, КА=КС=АС=8, АД=корінь(АС в квадраті/2)=корінь(64/2)=4*корінь2
проводимо апофему КН на АД, КН-висота=медіані, АН=НД=1/2АД=4*корінь2/2=2*корінь2, трикутник АКН прямокутний, КН=корінь(КА в квадраті-АН в квадраті)=корінь(64-8)=2*корінь14
бічна поверхня=1/2*периметрАВСД*КН=1/2*4*4*корінь2*2*корінь14=16*корінь28=32*корінь7