1) Пусть наша пирамида , опустим высоту , тогда рассмотрим прямоугольный треугольник с прямым углом .
Тогда угол между ребром и плоскости основания Рассмотрим прямоугольный треугольник где середина стороны тогда из прямоугольного треугольника это угол между боковой гранью и основанием 2) Пусть нам дана пирамида , тогда опустим высоту Откуда обозначим сторону квадрата как , тогда
Найдем высоту боковой грани , рассмотрим треугольник - где середина стороны основания . Откуда высота грани равна по теореме Пифагора
Тогда площадь боковой поверхности равна где - полупериметр основания он равен
3) По теореме синусов найдем радиус описанной окружности он будет катетом , если провести высоту , и рассмотреть прямоугольный треугольник образованный высотой , боковой гранью и радиусом описанной окружности .
тогда из прямоугольного треугольника , получим что высота будет равна радиусу описанной окружности так как углы равны по - равнобедренный треугольник
Так как точки М, N, K - середины сторон, а также исходя из того что треугольник равнобедренный и все его стороны равны AB=BC=AC делаем вывод что AM=MB=BN=NC=AK=KC. Так как в равностороннем треугольнике все углы равны 60 градусов, то треугольники AMK, MBN и NCK равнобедренные (AM=AK в треугольнике AMK, MB=BN в треугольнике MBN, NC=KC в треугольнике KNC) и каждый из них имеет один угол в 60 градусов. Исходя из того что 2 угла у основы равнобедренного треугольника равны решаем уравнение х+х+60=180градусов. Получаем х=60 градусов, то есть все углы треугольников AMK, MBN и KNC равны 60 градусов, значит это равнобедренные треугольники, а раз они равнобедренные то все их стороны равны. то есть AM=AK=MK, MB=BN=MN, KC=NC=NK, ТО ЕСТЬ AM=AK=MK=MB=BN=MN=KC=NC=NK, значит MK=MN=NK =) MNK-равносторонний
с прямым углом .
Тогда угол между ребром и плоскости основания
Рассмотрим прямоугольный треугольник где
середина стороны
тогда
из прямоугольного треугольника
это угол между боковой гранью и основанием
2) Пусть нам дана пирамида , тогда опустим высоту
Откуда
обозначим сторону квадрата как , тогда
Найдем высоту боковой грани , рассмотрим треугольник - где середина стороны основания .
Откуда высота грани равна по теореме Пифагора
Тогда площадь боковой поверхности равна
где - полупериметр основания он равен
3) По теореме синусов найдем радиус описанной окружности он будет катетом , если провести высоту , и рассмотреть прямоугольный треугольник образованный высотой , боковой гранью и радиусом описанной окружности .
тогда из прямоугольного треугольника , получим что высота будет равна радиусу описанной окружности так как углы равны по - равнобедренный треугольник
Так как в равностороннем треугольнике все углы равны 60 градусов, то треугольники AMK, MBN и NCK равнобедренные (AM=AK в треугольнике AMK, MB=BN в треугольнике MBN, NC=KC в треугольнике KNC) и каждый из них имеет один угол в 60 градусов. Исходя из того что 2 угла у основы равнобедренного треугольника равны решаем уравнение х+х+60=180градусов. Получаем х=60 градусов, то есть все углы треугольников AMK, MBN и KNC равны 60 градусов, значит это равнобедренные треугольники, а раз они равнобедренные то все их стороны равны. то есть AM=AK=MK, MB=BN=MN, KC=NC=NK, ТО ЕСТЬ AM=AK=MK=MB=BN=MN=KC=NC=NK, значит MK=MN=NK =) MNK-равносторонний