Так как к стороне проведена высота, то получится прямоугольный треугольник в котором известен катет=высоте=12 и гипотенуза=малой стороне параллел=15 найдем угол sin(угла)=катет\гипот=12\15=3\5 cos (угла)=√(1-sin²(угла))=√(1-16\25)=√9\25=3\5 по формуле найдем диагональ a=√(b²+c²-2bc*cos(угла))=√(15²+25²-2*15*25*3\5)=√400=20 по свойсчтву диагоналей параллелограмма (сумма квадратов диагоналей равна сумме квадратов сторон) найдем вторую диагональ 400+диаг²=25²+15² диаг²=625+225-400=450 диаг=√450=15√2 ответ 20 и 15√2
1. Это надо начертить, тогда все увидишь. Так как AC=BD а это диагонали нашего четырехугольника, значит, по равенству диагоналей, четырехугольник-либо прямоугольник, либо равнобокая трапеция. Рисуй равнобокую трапецию ABCD. Расставь серединные точки, нарисуй диагонали. И вот что мы видим: угол LMN в треугольнике LMN где ML-средняя линия треугольника BDC (так как указанные точки СЕРЕДИНЫ сторон) и значит равна половине основания ML=BD/2 NM-средняя линия в треугольнике АВС, значит равна половине АС NM=AC/2 По условию LN=AC/2=BD/2 значит ML=2LN/2=LN NM=2LN/2=LN итак в треугольнике LMN LN=ML=NM раз стороны равны, значит, треугольник равносторонний, а его углы равны по 180.3=60 ответ 60 2. по признаку параллельности прямой и плоскости -прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости. так что минимум -одна, но в плоскости можно начертить n-количество прямых параллельных друг другу, а значит и параллельных прямой вне плоскости
sin(угла)=катет\гипот=12\15=3\5
cos (угла)=√(1-sin²(угла))=√(1-16\25)=√9\25=3\5
по формуле найдем диагональ
a=√(b²+c²-2bc*cos(угла))=√(15²+25²-2*15*25*3\5)=√400=20
по свойсчтву диагоналей параллелограмма (сумма квадратов диагоналей равна сумме квадратов сторон) найдем вторую диагональ
400+диаг²=25²+15²
диаг²=625+225-400=450
диаг=√450=15√2
ответ 20 и 15√2
Так как AC=BD а это диагонали нашего четырехугольника, значит, по равенству диагоналей, четырехугольник-либо прямоугольник, либо равнобокая трапеция. Рисуй равнобокую трапецию ABCD. Расставь серединные точки, нарисуй диагонали. И вот что мы видим: угол LMN в треугольнике LMN где
ML-средняя линия треугольника BDC (так как указанные точки СЕРЕДИНЫ сторон) и значит равна половине основания
ML=BD/2
NM-средняя линия в треугольнике АВС, значит равна половине АС
NM=AC/2
По условию LN=AC/2=BD/2
значит
ML=2LN/2=LN
NM=2LN/2=LN итак в треугольнике LMN LN=ML=NM раз стороны равны, значит, треугольник равносторонний, а его углы равны по 180.3=60
ответ 60
2. по признаку параллельности прямой и плоскости -прямая параллельна плоскости, если она параллельна прямой, лежащей в этой плоскости.
так что минимум -одна, но в плоскости можно начертить n-количество прямых параллельных друг другу, а значит и параллельных прямой вне плоскости