Стержень - это цилиндр высотой Н и радиусом R. Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d: D=d=a√2=12√2. Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH. Объем прям.параллелепипеда Vп=a²H=144H. Объем проделанного отверстия радиусом r=6/2=3: Vо=πr²H=9πH. Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16) Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
1) Сумма всех четырёх углов, которые образуются при пересечении двух прямых = 360°, причём противолежащие друг другу углы равны. 360° - 325° = 35° - это четвёртый угол. Вертикальный (противоположный) ему угол входит в сумму трёх углов и = 35° 2) (325 - 35) = 290°- сумма двух равных больших углов 3) 290° : 2 = 145° ответ: 145° - величина большего угла.
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
360° - 325° = 35° - это четвёртый угол. Вертикальный (противоположный) ему угол входит в сумму трёх углов и = 35°
2) (325 - 35) = 290°- сумма двух равных больших углов
3) 290° : 2 = 145°
ответ: 145° - величина большего угла.
Чертёж:
\ ∠4 = ∠2 (как вертикальные)
\ ∠1 = ∠3 (как вертикальные
4_\_1 ∠1 +∠2 + ∠3 = 325°
3 \ 2
\
\