Внутренний угол смежный с внешним в сумме равны 180 градусов
<CBD=180-40=140 градусов
Треугольник АВС равнобедренный
<А=<С,как углы при основании равнобедренного треугольника
<А+<С=<CBD=140 градусов,потому что два внутренних не смежных с внешним угла равны его градусной мере
<А=<С=140:2=70 градусов
Номер 2
Если треугольник равносторонний,то это обозначает что все его стороны равны между собой и каждый угол равен по 60 градусов
В равносторонних треугольниках медиана или биссектриса или высота опущенная на противоположную сторону одновременно является и биссектрисой и высотой и медианой
Буквы F на чертеже я не вижу,может это точка пересечения AD и ВЕ?
Тогда <АFB равен:
Угол А биссектриса поделила на два равных угла,один из них <ВАF
<BAF=60:2=30 градусов
<АВF=90 градусов, т к ЕВ перпендикуляр(высота) и со стороной АС образует два прямых угла
<АFB=180-(30+90)=60 градусов
Если нужен угол АEB,то
<АЕВ=60:2=30
Номер 3
Если ВС=АС,то перед нами равнобедренный треугольник
Внутренний угол смежный с внешним в сумме равны 180 градусов
<CBD=180-40=140 градусов
Треугольник АВС равнобедренный
<А=<С,как углы при основании равнобедренного треугольника
<А+<С=<CBD=140 градусов,потому что два внутренних не смежных с внешним угла равны его градусной мере
<А=<С=140:2=70 градусов
Номер 2
Если треугольник равносторонний,то это обозначает что все его стороны равны между собой и каждый угол равен по 60 градусов
В равносторонних треугольниках медиана или биссектриса или высота опущенная на противоположную сторону одновременно является и биссектрисой и высотой и медианой
Буквы F на чертеже я не вижу,может это точка пересечения AD и ВЕ?
Тогда <АFB равен:
Угол А биссектриса поделила на два равных угла,один из них <ВАF
<BAF=60:2=30 градусов
<АВF=90 градусов, т к ЕВ перпендикуляр(высота) и со стороной АС образует два прямых угла
<АFB=180-(30+90)=60 градусов
Если нужен угол АEB,то
<АЕВ=60:2=30
Номер 3
Если ВС=АС,то перед нами равнобедренный треугольник
<А=<В=(180-30):2=75 градусов
ВD-перпендикуляр на АС(высота),
<АОВ=90 градусов
<АВD=180-(75+90)=15 градусов
Объяснение:
1) Дано: ΔАВС, D - середина АВ, Е - середина ВС, AD = CE.
Доказать: ΔBDC = ΔBEA.
Доказательство:
AD = DB, так как D - середина АВ,
СЕ = ЕВ, так как Е - середина ВС,
AD = CE по условию, значит
AD = DB = СЕ = ЕВ, а следовательно
АВ = ВС.
В треугольниках BDC и BEA:
ВС = АВ,
DB = EB,
∠B - общий, ⇒
ΔBDC = ΔBEA по двум сторонам и углу между ними.
2) Дано: ΔKLM - равносторонний, А - внутренняя точка ΔKLM,
AK = AL = AM.
Доказать: ΔKLA = ΔMLA.
Доказательство:
АК = АМ по условию,
LK = LM как стороны равностороннего треугольника,
AL - общая сторона для треугольников KLA и MLA, ⇒
ΔKLA = ΔMLA по трем сторонам.