Начнем с самого простого: Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности. Rш=10см. Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см. Тогда его сторона равна Rк= 10√2см. Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3. Но можно и без формулы: по теореме косинусов. a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см. ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
1. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. периметр треуг. образованного средними линиями в 2 раза меньше периметра основного треуг. Значит периметр основного треуг. = 60 см. 4 + 5 + 6 = 15 60 / 15 = 4 Таким образом стороны основного треугольника 16, 20, 24 А образованного средними линиями 8, 10, 12.
2. Треугольники MNK и ANB подобны по 2 сторонам и углу между ними, а так как медианы в месте пересечения делятся в соотношении 2 / 1 т.е. от вершины 2 / 3 и 1 / 3, то и сторона MK = AB / 2 * 3 = 12 / 2 *3 = 18 см
4. Так как BH высота получаем 2 прямоугольных треугольника AHB и CHB, зная один из катетов и противолежащий ему угол находим две составляющих AC. АН = BH / тангенс ( угла A), HC = BH / тангенс ( угла С ) АС=AH+HC = 4 / тангенс (альфа ) + 4 / тангенс (бета)
5. так как по определению трапеции верхнее и нижнее основания параллельны т.е. NK параллельна MP и EK = KP из условия, то NK является средней линией треугольника MEP. Следовательно MP = 2 * NK = 14 см. Разность оснований трапеции = 14 - 7 = 7 см.
Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности.
Rш=10см.
Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см.
Тогда его сторона равна Rк= 10√2см.
Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3.
Но можно и без формулы: по теореме косинусов.
a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см.
ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
1. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
периметр треуг. образованного средними линиями в 2 раза меньше периметра основного треуг. Значит периметр основного треуг. = 60 см.
4 + 5 + 6 = 15
60 / 15 = 4
Таким образом стороны основного треугольника 16, 20, 24
А образованного средними линиями 8, 10, 12.
2. Треугольники MNK и ANB подобны по 2 сторонам и углу между ними, а так как медианы в месте пересечения делятся в соотношении 2 / 1 т.е. от вершины 2 / 3 и 1 / 3, то и сторона MK = AB / 2 * 3 = 12 / 2 *3 = 18 см
3. По теореме Пифагора KP = корень (PT^2 + TK^2) = корень (49*3 + 49) = 14 см
тангенс угла K = PT / TK = 7* корень (3) / 7 = корень (3)
угол K = арктангенс (корень (3)) = 60 градусов.
4. Так как BH высота получаем 2 прямоугольных треугольника AHB и CHB, зная один из катетов и противолежащий ему угол находим две составляющих AC.
АН = BH / тангенс ( угла A), HC = BH / тангенс ( угла С )
АС=AH+HC = 4 / тангенс (альфа ) + 4 / тангенс (бета)
5. так как по определению трапеции верхнее и нижнее основания параллельны т.е. NK параллельна MP и EK = KP из условия, то NK является средней линией треугольника MEP. Следовательно MP = 2 * NK = 14 см.
Разность оснований трапеции = 14 - 7 = 7 см.