проведём диагональ АС и опустим высоту СН. Трапеция равнобокая DН=(АD-BC)/2=4
AC пересекает параллельные прямые АD и BC поэтому накрест лежащие углы равны . угол САD равен углу АСВ. Кроме того СА биссектриса угла ВСD . Поэтому CAD также равен углу АСD. рассмотрим треугольник АСD. В нем мы только что установили что угол А равен углу С. Поэтому АD равно DC = 20.
теперь рассмотрим треугольник СНD. он прямоугольный . угол Н прямой. DC=20 DH=4 по теореме Пифагора CH = √(20^2-4^2)= 8√6.
Площадь трапеции - средняя линия (АD+BC)/2= 16 умножить на найденную высоту СН=8√6 - равна 128√6
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
Обозначим вершины трапеции АBCD AD=20 BC=12.
проведём диагональ АС и опустим высоту СН. Трапеция равнобокая DН=(АD-BC)/2=4
AC пересекает параллельные прямые АD и BC поэтому накрест лежащие углы равны . угол САD равен углу АСВ. Кроме того СА биссектриса угла ВСD . Поэтому CAD также равен углу АСD. рассмотрим треугольник АСD. В нем мы только что установили что угол А равен углу С. Поэтому АD равно DC = 20.
теперь рассмотрим треугольник СНD. он прямоугольный . угол Н прямой. DC=20 DH=4 по теореме Пифагора CH = √(20^2-4^2)= 8√6.
Площадь трапеции - средняя линия (АD+BC)/2= 16 умножить на найденную высоту СН=8√6 - равна 128√6