1. Даны два прямоугольных треугольника АВС, АВD (рис 1). Доказать: ∆АВС = ∆АDC.
Найти ВАD, если ВС = СD, АСВ = 55°.
2. Дан ΔАВС, ВО – высота (рис 2).
Доказать: Δ АВО = ΔОВС
Найдите АВ, если А= 30° , ВО = 6 см.
3.Дано ΔАВС – равнобедренный,
ВО – биссектриса ( рис 3).
Доказать: Δ АВО= Δ ОВС
Найдите ВО, если В = 60°, АВ =26 см.
4. Дан треугольник АВС, где угол В = 90°. Внешний угол при вершине А равен 120°, сторона АВ равна 7 см. Чему равна длина гипотенузы?
5. Один из углов прямоугольного треугольника равен 60 0, а сумма гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу НУЖНО ПОДРОБНОЕ ОБЬЯСНЕНИЕ
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Смотрите, что надо сделать, чтобы решение само по себе возникло:)))
Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС. Поэтому ответ 34 :)))