1. Даны два угла KONH BOC с общей вершиной. Угол ВОСрасположен внутри угла KOV Стороны одного угла перпендикулярны к сторонам другого. Найдите эти утлы, если разность между ними равна прямому утлу. [
Сельское хозяйство зарубежной европы: доля активного населения после второй мировой войны в государств этого региона произошли серьезные изменения. доля активного населения, занятого в сельском хозяйстве, значительно снизилась. связано это было с развитием новых интенсивных методов производства, повышением благосостояния населения и многими другими факторами. однако серьезные различия между отдельными странами в этом плане сохранились. к примеру, в великобритании на 2005 год в сельскохозяйственной области было занято около 1,4% всего активного населения, в португалии – 19%, а в румынии – 42%. похожая ситуация сохраняется и сегодня - читайте подробнее на fb.ru:
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать.