. 1.Даны координаты вектора и координаты точки А(– 6 ; – 11 ). Найдите координаты точки В.
2.Даны координаты вектора и координаты точки В(– 8 ; 12 ). Найдите координаты точки А.
3.Даны координаты точки А(5 ; – 4 ) и координаты точки В( – 1; 7). Найдите координаты вектора .
4. Найдите координаты середины М отрезка СК, если С (5; – 12 ) и К ( – 3 ; 24)
5. Дан отрезок СК и координаты середины М ( – 17; 19). Найдите координаты точки С, если координаты точки К( – 13; – 18) .
6. Дана равнобедренная трапеция, боковые стороны которой равны 5. Высота трапеции равна 4, а одно из оснований равно 10. Найдите: 1) среднюю линию трапеции; 2) площадь трапеции.
Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
ответ:
объяснение:
2. прямую можно обозначать одной маленькой латинской буквой (a,b,
или двумя заглавными латинскими буквами, если этими буквами обозначены точки, расположенные на прямой (ab, cd)
3. у прямой много свойств: через одну точку можно провести бесконечно много прямых, через любые две точки можно провести только одну прямую, у любой прямой, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие
4. прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых называют пересекающимися.
6. утверждение, имеющее доказательство, т.е. его надо доказать.
9. их тоже несколько (равные отрезки имеют равные длины, часть отрезка всегда имеет длину, которая меньше длины отрезка, если точки на отрезке делят отрезок на части, то длина отрезка равна сумме длин этих частей.
10. длина отрезка.
11.это точка, которая делит данный отрезок на две равные части.